首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 189 毫秒
1.
《Physica A》2005,358(1):30-38
The motion of dunes and their morphology is a fascinating, largely unexplored subject. Already the barchan, the simplest moving dune, poses many questions. We will present some results of field measurements on desert and costal dunes. Then we will present a model which consists of three coupled equations of motion for the topography, the shear stress of the wind and the sand flux. These evolution equations are verified on the experimental data and new possibilities of simulations of dunes are put in perspective.  相似文献   

2.
The motion of dunes and their morphology is a fascinating, largely unexplored subject. Already the barchan, the simplest moving dune, poses many questions. I will present some results of field-measurements on desert and coastal dunes. Then I will present a model which consists of three coupled equations of motion for the topography, the shear stress of the wind and the sand flux. These evolution equations are verified on the experimental data and new possibilities of simulations of dunes are put in perspective. To cite this article: H.J. Herrmann, C. R. Physique 3 (2002) 197–206.  相似文献   

3.
《Physica A》2005,357(1):50-56
Sand dunes form an important and unique system that can be mobile or fixed by vegetation. The common mobility indices of sand dunes, which are related to the wind and the amount of precipitation and potential evaporation, do not work in many dune fields around the world. The reasons for that lie in the singular physical characteristics of the sandy soil. Sand has high hydraulic conductivity causing a high rate of infiltration of rain water to the groundwater. Sand particles lack cohesion and that makes wind erosion the main limiting factor for vegetation. Hence, wind power, manifested by the drift potential (DP), is a good index for the limiting factor of plants on sand. The physical–biological interaction is further developed by hysteresis, which shows that a dune can become vegetated when the wind power is sufficiently low. Once vegetated, a much higher wind stress is needed to destroy the vegetation and re-activate the dunes.  相似文献   

4.
On the crescentic shape of barchan dunes   总被引:4,自引:0,他引:4  
Aeolian sand dunes originate from wind flow and sand bed interactions. According to wind properties and sand availability, they can adopt different shapes, ranging from huge motion-less star dunes to small and mobile barchan dunes. The latter are crescentic and emerge under a unidirectional wind, with a low sand supply. Here, a 3d model for barchan based on existing 2d model is proposed. After describing the intrinsic issues of 3d modeling, we show that the deflection of particules in reptation due to the shape of the dune leads to a lateral sand flux deflection, which takes the mathematical form of a non-linear diffusive process. This simple and physically meaningful coupling method is used to understand the shape of barchan dunes.Received: 26 January 2004, Published online: 9 April 2004PACS: 45.70.-n Granular systems - 47.54. + r Pattern selection; pattern formation  相似文献   

5.
Transgressive dune fields, which are active sand areas surrounded by vegetation, exist on many coasts. In some regions like in Fraser Island in Australia, small dunes shrink while large ones grow, although both experience the same climatic conditions. We propose a general mathematical model for the spatiotemporal dynamics of vegetation cover on sand dunes and focus on the dynamics of transgressive dunes. Among other possibilities, the model predicts growth parallel to the wind with shrinkage perpendicular to the wind, where, depending on geometry and size, a transgressive dune can initially grow although eventually shrink. The larger is the initial area the slower its stabilization process. The model’s predictions are supported by field observations from Fraser Island in Australia.  相似文献   

6.
A bifurcation analysis of dune shape transition is made. By use of a reduced model of dune morphodynamics, the Dune Skeleton model, we elucidate the transition mechanism between different shapes of dunes under unidirectional wind. It was found that the decrease in the total amount of sand in the system and/or the lateral sand flow shifts the stable state from a straight transverse dune to a wavy transverse dune through a pitchfork bifurcation. A further decrease causes wavy transverse dunes to shift into barchans through a Hopf bifurcation. These bifurcation structures reveal the transition mechanism of dune shapes under unidirectional wind.  相似文献   

7.
8.
《Comptes Rendus Physique》2015,16(1):118-138
The physics of dunes relies on the interaction between a wind flow and an erodible topography. Thus, if strong enough to transport grains, the wind shapes sandy areas into dune fields. These dunes are reminiscent of a wavy sea so that sandy deserts are called sand seas. However, the comparison stops there. Contrary to water waves, dunes propagate only under wind action and when the wind stops, they do not vanish but stand. Consequently, dunes are not only the result of the present winds, but can integrate the wind regimes over long periods. Thus, they exhibit a range of shapes and sizes with superimposed patterns. They are witnesses of past wind regimes and their shape and orientation are used to constraint climatic models on other planetary bodies where they are observed as well (e.g., Mars, Titan and Venus). Here, we discuss the morphodynamics of dunes and endeavor to identify and to explain the physical mechanisms at play in the selection of their shape, size and orientation, whilst focusing on Earth desert sand dunes.  相似文献   

9.
分析了两种颗粒剪应力的定义,一种来自于颗粒黏性阻力,一种来自于颗粒相雷诺应力。通过建立三维风沙流离散颗粒模型,计算分析了这两种颗粒剪应力的差别。结果表明,除了近地面附近,这两种颗粒剪应力基本相等。而在近地面附近,来自于颗粒相雷诺应力的颗粒剪应力小于来自于颗粒黏性阻力的颗粒剪应力,这种差别的主要原因是由于在近地表而附近,颗粒碰撞会产生附加碰撞剪应力。  相似文献   

10.
《Physics letters. A》2001,288(1):16-22
A discrete computer method, which considers the principal characteristics of the motion of discrete particles caused by the airflow over the aeolian bedforms using a set of simple rules, is suggested to simulate the initiation and evolution of wind blown sand ripples and dunes. The results indicate that, if the grain-bed impacting and surface creep are taken into account, the model is capable of reproducing sand ripples vividly, and describing the reparation of any destroy to rippled surface, a phenomenon observed in field. If the saltation driven by the main flow and the secondary flow, the surface creep due to gravity, and the slide occurring when the slope of sand surface is larger than the angle of repose are considered, the model can simulate the formation and development of sand dunes whose shape and arrangement in space are in accordance with the landscape of typical deserts. After a further investigation into the simulation process, we draw the conclusion that the aeolian bedforms is a system of self-organization and hierarchy with a fractal character.  相似文献   

11.
In order to test parameters of the peculiar dynamics occurring in barchan fields, and compute statistical analysis over large numbers of dunes, we build and study an agent-based model, which includes the well-known physics of an isolated barchan, and observations of interactions between dunes. We showed in a previous study that such a model, where barchans interact through short-range sand recapture and collisions, reproduces the peculiar behaviours of real fields, namely its spatial structuring along the wind direction, and the size selection by the local density. In this paper we focus on the mechanisms that drives these features. In particular, we show that eolian remote sand transfer between dunes ensures that a dense field structures itself into a very heterogeneous pattern, which alternates dense and diluted stripes in the wind direction. In these very dense clusters of dunes, the accumulation of collisions leads to the local emergence of a new size for the dunes.  相似文献   

12.
We present in this paper a simplification of the dune model proposed by Sauermann et al. which keeps the basic mechanisms but allows analytical and parametric studies. Two kinds of purely propagative two dimensional solutions are exhibited: dunes and domes. The latter, by contrast to the former, do not present a slip face. Their shape and velocity can be predicted as a function of their size. We recover that dune profiles are not scale invariant (small dunes are flatter than the large ones), and that the inverse of the velocity grows almost linearly with the dune size. We furthermore get the existence of a critical mass below which no dune solution exists. It rises the problem of dune nucleation: how can dunes appear if any bump below this minimal mass gets eroded and disappears? The linear stability analysis of a flat sand bed shows that it is unstable at large wavelengths: dune can in fact nucleate from a small sand mass if the proto-dune is sufficiently long. Received 22 December 2001 / Received in final form 31 May 2002 Published online 31 July 2002  相似文献   

13.
This paper presents results detailing the quantitative visualization of flow fields associated with natural sand dunes, Fraser River Estuary, Canada, using the complementary approaches of laboratory modelling and field instrumentation. Ultrasonic Doppler velocity profiling is used in the laboratory to elucidate the mean flow fields of low-angle dunes (leeside slope angle ≈14°) that are typical of many large natural rivers. These dunes do not possess a zone of permanent flow separation in the dune leeside and have a velocity structure that is dominated by the effects of flow acceleration and deceleration generated by topographic forcing of flow over the dune form. Turbulence associated with these dunes appears linked to both longer-period shear layer flapping and eddy generation along the shear layer. The field study uses acoustic Doppler profiling to reveal similar mean flow patterns and shows that flow is dominated by deceleration in the leeside without the presence of a region of permanent separated flow.  相似文献   

14.
Sand-moving winds blowing from a constant direction in an area of high sand availability form transverse dunes, which have a fixed profile in the direction orthogonal to the wind. Here we show, by means of a linear stability analysis, that transverse dunes are intrinsically unstable. Any perturbation in the cross-wind profile of a transverse dune amplifies in the course of dune migration due to the combined effect of two main factors, namely: the lateral transport through avalanches along the dune’s slip-face, and the scaling of dune migration velocity with the inverse of the dune height. Our calculations provide a quantitative explanation for recent observations from experiments and numerical simulations, which showed that transverse dunes moving on the bedrock (or “transverse sand ridges”) cannot exist in a stable form and decay into a chain of crescent-shaped barchans.  相似文献   

15.
Sand dunes can be active (mobile) or stable, mainly as a function of vegetation cover and wind power. However, there exists as yet unexplained evidence for the coexistence of bare mobile dunes and vegetated stabilized dunes under the same climatic conditions. We propose a model for dune vegetation cover driven by wind power that exhibits bistabilty and hysteresis with respect to the wind power. For intermediate wind power, mobile and stabilized dunes can coexist, whereas for low (or high) wind power they can be fixed (or mobile). Climatic change or human intervention can turn active dunes into stable ones and vice versa; our model predicts that prolonged droughts with stronger winds can result in dune reactivation.  相似文献   

16.
The effect of electrostatic force on the evolution of sand saltation cloud   总被引:10,自引:0,他引:10  
In a wind-blown sand layer, it has been found that wind transport of particles is always associated with separation of electric charge. This electrification in turn produces some electrostatic forces in addition to the gravitational and fluid friction forces that affect the movement of saltating sand particles, further, the wind-blown sand saltation. To evaluate this effect quantitatively, this paper presents a simulation of evolution of wind-blown sand grains after the electrostatic forces exerted on the grains are taken into account in the wind feedback mechanism of wind-blown saltation. That is, the coupling interaction between the wind flow and the saltating sand particles is employed in the simulation to the non-stationary wind and sand flows when considering fluid drag, gravitation, and a kind of electrostatic force generated from a distribution of electric field changing with time in the evolution process of the sand saltation. On the basis of the proposed simulation model, a numerical program is given to perform the simulation of this dynamic process and some characteristic quantities, e.g., duration of the system to reach the steady state, and curves of the saltating grain number, grain transport rate, mass-flux profile, and wind profile varying with time during the non-stationary evolution are displayed. The obtained numerical results exhibit that the electrostatic force is closely related to the average charge-to-mass ratio of sand particles and has obvious influence on these characteristic quantities. The obtained results also show that the duration of the system to reach the steady state, the sand transport rate and the mass flux profile coincide well with experimental results by Shao and Raupach (1992) when the average charge-to-mass ratio of sand particles is 60 μC/kg for the sand particles with average diameter of 0.25 mm. When the average charge-to-mass ratios of sand particles are taken as some other certain values, the calculation results still show that the mass flux profiles are well in agreement with the experimental data by Rasmussen and Mikkelsen (1998) for another category of sand particles, which tell us that the electrostatic force is one of main factors that have to be considered in the research of mechanism of wind-blown sand saltation.  相似文献   

17.
18.
With the discrete element method (DEM), employing the diameter distribution of natural sands sampled from the Tengger Desert, a mixed-size sand bed was produced and the particle-bed collision was simulated in the mixed-size wind sand movement. In the simulation, the shear wind velocity, particle diameter, incident velocity and incident angle of the impact sand particle were given the same values as the experimental results. After the particle-bed collision, we collected all the initial velocities of rising sand particles, including the liftoff angular velocities, liftoff linear velocities and their horizontal and vertical components. By the statistical analysis on the velocity sample for each velocity component, its probability density functions were obtained, and they are the functions of the shear wind velocity. The liftoff velocities and their horizontal and vertical components are distributed as an exponential density function, while the angular velocities are distributed as a normal density function. Supported by the Key Project of the National Natural Science Foundation of China (Grant No. 10532040)  相似文献   

19.
The simplest type of dune is the transverse one, which propagates with invariant profile orthogonally to a fixed wind direction. Here we show, by means of numerical simulations, that transverse dunes are unstable with respect to along-axis perturbations in their profile and decay on the bedrock into barchan dunes. Any forcing modulation amplifies exponentially with growth rate determined by the dune turnover time. We estimate the distance covered by a transverse dune before fully decaying into barchans and identify the patterns produced by different types of perturbation.  相似文献   

20.
This paper illustrates a new analytical model for determining equivalent salt deposit density (ESDD) on contaminated insulators using wind velocity. The analytical model is derived using the dimensional analysis technique. The values of ESDD from the analytical model are calculated using different values of wind velocity. These results are compared with the experimental results obtained from sites. The analytical results are also compared with the polynomial model output obtained via least-squares analysis of experimental data. It is found that the results obtained by the analytical model are quite consistent with the experimental results for different range of wind velocity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号