首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
We study the effects of network topology on the response of networks of coupled discrete excitable systems to an external stochastic stimulus. We extend recent results that characterize the response in terms of spectral properties of the adjacency matrix by allowing distributions in the transmission delays and in the number of refractory states and by developing a nonperturbative approximation to the steady state network response. We confirm our theoretical results with numerical simulations. We find that the steady state response amplitude is inversely proportional to the duration of refractoriness, which reduces the maximum attainable dynamic range. We also find that transmission delays alter the time required to reach steady state. Importantly, neither delays nor refractoriness impact the general prediction that criticality and maximum dynamic range occur when the largest eigenvalue of the adjacency matrix is unity.  相似文献   

2.
The largest eigenvalue of the adjacency matrix of networks is a key quantity determining several important dynamical processes on complex networks. Based on this fact, we present a quantitative, objective characterization of the dynamical importance of network nodes and links in terms of their effect on the largest eigenvalue. We show how our characterization of the dynamical importance of nodes can be affected by degree-degree correlations and network community structure. We discuss how our characterization can be used to optimize techniques for controlling certain network dynamical processes and apply our results to real networks.  相似文献   

3.
We present and numerically test an analysis of the percolation transition for general node removal strategies valid for locally treelike directed networks. On the basis of heuristic arguments we predict that, if the probability of removing node i is p(i), the network disintegrates if p(i) is such that the largest eigenvalue of the matrix with entries A(ij)(1-p(i)) is less than 1, where A is the adjacency matrix of the network. The knowledge or applicability of a Markov network model is not required by our theory, thus making it applicable to situations not covered by previous works.  相似文献   

4.
We study the dynamics of networks with coupling delay, from which the connectivity changes over time. The synchronization properties are shown to depend on the interplay of three time scales: the internal time scale of the dynamics, the coupling delay along the network links and time scale at which the topology changes. Concentrating on a linearized model, we develop an analytical theory for the stability of a synchronized solution. In two limit cases, the system can be reduced to an “effective” topology: in the fast switching approximation, when the network fluctuations are much faster than the internal time scale and the coupling delay, the effective network topology is the arithmetic mean over the different topologies. In the slow network limit, when the network fluctuation time scale is equal to the coupling delay, the effective adjacency matrix is the geometric mean over the adjacency matrices of the different topologies. In the intermediate regime, the system shows a sensitive dependence on the ratio of time scales, and on the specific topologies, reproduced as well by numerical simulations. Our results are shown to describe the synchronization properties of fluctuating networks of delay-coupled chaotic maps.  相似文献   

5.
Excitable scale free networks   总被引:1,自引:0,他引:1  
When a simple excitable system is continuously stimulated by a Poissonian external source, the response function (mean activity versus stimulus rate) generally shows a linear saturating shape. This is experimentally verified in some classes of sensory neurons, which accordingly present a small dynamic range (defined as the interval of stimulus intensity which can be appropriately coded by the mean activity of the excitable element), usually about one or two decades only. The brain, on the other hand, can handle a significantly broader range of stimulus intensity, and a collective phenomenon involving the interaction among excitable neurons has been suggested to account for the enhancement of the dynamic range. Since the role of the pattern of such interactions is still unclear, here we investigate the performance of a scale-free (SF) network topology in this dynamic range problem. Specifically, we study the transfer function of disordered SF networks of excitable Greenberg-Hastings cellular automata. We observe that the dynamic range is maximum when the coupling among the elements is critical, corroborating a general reasoning recently proposed. Although the maximum dynamic range yielded by general SF networks is slightly worse than that of random networks, for special SF networks which lack loops the enhancement of the dynamic range can be dramatic, reaching nearly five decades. In order to understand the role of loops on the transfer function we propose a simple model in which the density of loops in the network can be gradually increased, and show that this is accompanied by a gradual decrease of dynamic range.  相似文献   

6.

The spectral properties of the adjacency matrix, in particular its largest eigenvalue and the associated principal eigenvector, dominate many structural and dynamical properties of complex networks. Here we focus on the localization properties of the principal eigenvector in real networks. We show that in most cases it is either localized on the star defined by the node with largest degree (hub) and its nearest neighbors, or on the densely connected subgraph defined by the maximum K-core in a K-core decomposition. The localization of the principal eigenvector is often strongly correlated with the value of the largest eigenvalue, which is given by the local eigenvalue of the corresponding localization subgraph, but different scenarios sometimes occur. We additionally show that simple targeted immunization strategies for epidemic spreading are extremely sensitive to the actual localization set.

  相似文献   

7.
8.
Consider the random matrix obtained from the adjacency matrix of a random d-regular graph by multiplying every entry by a random sign. The largest eigenvalue converges, after proper scaling, to the Tracy–Widom distribution.  相似文献   

9.
In this Letter we study networks that have been optimized to realize a trade-off between communication efficiency and dynamical resilience. While the first is related to the average shortest pathlength, we argue that the second can be measured by the largest eigenvalue of the adjacency matrix of the network. Best efficiency is realized in star-like configurations, while enhanced resilience is related to the avoidance of short loops and degree homogeneity. Thus crucially, very efficient networks are not resilient while very resilient networks lack in efficiency. Networks that realize a trade-off between both limiting cases exhibit core-periphery structures, where the average degree of core nodes decreases but core size increases as the weight is gradually shifted from a strong requirement for efficiency and limited resilience towards a smaller requirement for efficiency and a strong demand for resilience. We argue that both, efficiency and resilience are important requirements for network design and highlight how networks can be constructed that allow for both.  相似文献   

10.
Zhi Li  Ju-Jang Lee 《Physics letters. A》2008,372(8):1228-1235
Global exponentially synchronization in asymmetrically coupled networks is investigated in this Letter. We extend eigenvalue based method to synchronization in symmetrically coupled network to synchronization in asymmetrically coupled network. A new stability criterion of eigenvalue based is derived. In this criterion, both a term that is the second largest eigenvalue of a symmetrical matrix and a term that is the largest value of sum of column of asymmetrical coupling matrix play a key role. Comparing with existing results, the advantage of our synchronization stability result is that it can analytical be applied to the asymmetrically coupled networks and overcome the complexity on calculating eigenvalues of coupling asymmetric matrix. Therefore, this condition is very convenient to use. Moreover, a necessary condition of this synchronization stability criterion is also given by the elements of the coupling asymmetric matrix, which can conveniently be used in judging the synchronization stability condition without calculating the eigenvalues of coupling matrix.  相似文献   

11.
Global Synchronization of General Delayed Dynamical Networks   总被引:2,自引:0,他引:2       下载免费PDF全文
李智 《中国物理快报》2007,24(7):1869-1872
Global synchronization of general delayed dynamical networks with linear coupling are investigated. A sufficient condition for the global synchronization is obtained by using the linear matrix inequality and introducing a reference state. This condition is simply given based on the maximum nonzero eigenvalue of the network coupling matrix. Moreover, we show how to construct the coupling matrix to guarantee global synchronization of network, which is very convenient to use. A two-dimension system with delay as a dynamical node in network with global coupling is finally presented to verify the theoretical results of the proposed global synchronization scheme.  相似文献   

12.
We consider the ensemble of adjacency matrices of Erd?s-Rényi random graphs, i.e. graphs on N vertices where every edge is chosen independently and with probability pp(N). We rescale the matrix so that its bulk eigenvalues are of order one. Under the assumption \({p N \gg N^{2/3}}\), we prove the universality of eigenvalue distributions both in the bulk and at the edge of the spectrum. More precisely, we prove (1) that the eigenvalue spacing of the Erd?s-Rényi graph in the bulk of the spectrum has the same distribution as that of the Gaussian orthogonal ensemble; and (2) that the second largest eigenvalue of the Erd?s-Rényi graph has the same distribution as the largest eigenvalue of the Gaussian orthogonal ensemble. As an application of our method, we prove the bulk universality of generalized Wigner matrices under the assumption that the matrix entries have at least 4 + ε moments.  相似文献   

13.
Based on the original definition of the synchronization stability, a general framework is presented for investigating the exponential stability of synchronization in asymmetrically coupled networks. By choosing an appropriate Lyapunov function, we prove that the mechanism of the exponential synchronization stability is the asymmetrical coupling matrix with diffusive condition. We deduce the second largest eigenvalue of a symmetric matrix to govern the exponential stability of synchronization in asymmetrically coupled networks. Moreover, we have given the threshold value which can guarantee that the states of the asymmetrically coupled network achieve the exponential stability of synchronization.  相似文献   

14.
We investigated the topological properties of stock networks constructed by a minimal spanning tree. We compared the original stock network with the estimated network; the original network is obtained by the actual stock returns, while the estimated network is the correlation matrix created by random matrix theory. We found that the consistency between the two networks increases as more eigenvalues are considered. In addition, we suggested that the largest eigenvalue has a significant influence on the formation of stock networks.  相似文献   

15.
We propose a conceptually novel method of reconstructing the topology of dynamical networks. By examining the correlation between the variable of one node and the derivative of another node’s variable, we derive a simple matrix equation yielding the network adjacency matrix. Our assumptions are the possession of time series describing the network dynamics, and the precise knowledge of the internal interaction functions. Our method involves a tunable parameter, allowing for the reconstruction precision to be optimized within the constraints of given dynamical data. The method is illustrated on a simple example, and the dependence of the reconstruction precision on the dynamical properties of time series is discussed. Our theory is in principle applicable to any weighted or directed network whose interaction functions are known.  相似文献   

16.
In this paper the pinning consensus of multi-agent networks with arbitrary topology is investigated. Based on the properties of M-matrix, some criteria of pinning consensus are established for the continuous multi-agent network and the results show that the pinning consensus of the dynamical system depends on the smallest real part of the eigenvalue of the matrix which is composed of the Laplacian matrix of the multi-agent network and the pinning control gains. Meanwhile, the relevant work for the discrete-time system is studied and the corresponding criterion is also obtained. Particularly, the fundamental problem of pinning consensus, that is, what kind of node should be pinned, is investigated and the positive answers to this question are presented. Finally, the correctness of our theoretical findings is demonstrated by some numerical simulated examples.  相似文献   

17.
The extreme eigenvalues of adjacency matrices are important indicators on the influence of topological structures to the collective dynamical behavior of complex networks. Recent findings on the ensemble averageability of the extreme eigenvalue have further authenticated its applicability to the study of network dynamics. However, the ensemble average of extreme eigenvalue has only been solved analytically up to the second order correction. Here, we determine the ensemble average of the extreme eigenvalue and characterize its deviation across the ensemble through the discrete form of random scale-free network. Remarkably, the analytical approximation derived from the discrete form shows significant improvement over previous results, which implies a more accurate prediction of the epidemic threshold. In addition, we show that bimodal networks, which are more robust against both random and targeted removal of nodes, are more vulnerable to the spreading of diseases.  相似文献   

18.
In this paper, we introduce a model of an adaptive dynamical network by integrating the complex network model and adaptive technique. In this model, the adaptive updating laws for each vertex in the network depend only on the state information of its neighborhood, besides itself and external controllers. This suggests that an adaptive technique be added to a complex network without breaking its intrinsic existing network topology. The core of adaptive dynamical networks is to design suitable adaptive updating laws to attain certain aims. Here, we propose two series of adaptive laws to synchronize and pin a complex network, respectively. Based on the Lyapunov function method, we can prove that under several mild conditions, with the adaptive technique, a connected network topology is sufficient to synchronize or stabilize any chaotic dynamics of the uncoupled system. This implies that these adaptive updating laws actually enhance synchronizability and stabilizability, respectively. We find out that even though these adaptive methods can succeed for all networks with connectivity, the underlying network topology can affect the convergent rate and the terminal average coupling and pinning strength. In addition, this influence can be measured by the smallest nonzero eigenvalue of the corresponding Laplacian. Moreover, we provide a detailed study of the influence of the prior parameters in this adaptive laws and present several numerical examples to verify our theoretical results and further discussion.  相似文献   

19.
We employ a spectral decomposition method to analyze synchronization of a non-identical oscillator network. We study the case that a small parameter mismatch of oscillators is characterized by one parameter and phase synchronization is observed. We derive a linearized equation for each eigenmode of the coupling matrix. The parameter mismatch is reflected on inhomogeneous term in the linearized equation. We find that the oscillation of each mode is essentially characterized only by the eigenvalue of the coupling matrix with a suitable normalization. We refer to this property as spectral universality, because it is observed irrespective of network topology. Numerical results in various network topologies show good agreement with those based on linearized equation. This universality is also observed in a system driven by additive independent Gaussian noise.  相似文献   

20.
Random matrix theory (RMT) has been applied to the analysis of the cross-correlation matrix of a financial time series. The most important findings of previous studies using this method are that the eigenvalue spectrum largely follows that of random matrices but the largest eigenvalue is at least one order of magnitude higher than the maximum eigenvalue predicted by RMT. In this work, we investigate the cross-correlation matrix in the Vietnamese stock market using RMT and find similar results to those of studies realized in developed markets (US, Europe, Japan) , , , , , , , ,  and  as well as in other emerging markets, ,  and . Importantly, we found that the largest eigenvalue could be approximated by the product of the average cross-correlation coefficient and the number of stocks studied. We demonstrate this dependence using a simple one-factor model. The model could be extended to describe other characteristics of the realistic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号