首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 10 毫秒
1.
Soft colloidal interactions in colloidal glasses are modeled using suspensions of multiarm star polymers. Using a preshearing protocol that ensures a reproducible initial state ("rejuvenation" of the system), we report here the evolution of the flow curve from monotonically increasing to one dominated by a stress plateau, demonstrating a corresponding shear-banded state. Phenomenological understanding is provided through a scalar model that describes the free-energy landscape.  相似文献   

2.
Yield stress fluids have proven difficult to characterize, and a reproducible determination of the yield stress is difficult. We study two types of yield stress fluids (YSF) in a single system: simple and thixotropic ones. This allows us to show that simple YSF are simply a special case of thixotropic ones, and to pinpoint the difference between static and dynamic yield stresses, one of the major problems in the field. The thixotropic systems show a strong time dependence of the viscosity due to the existence of an internal percolated structure that confers the yield stress to the material. Using loaded emulsions to control the thixotropy, we show that the transition to flow at the yield stress is discontinuous for thixotropic materials, and continuous for ideal ones. The discontinuity leads to a critical shear rate below which no steady flows can be observed, accounting for the ubiquitous shear banding observed in these materials.  相似文献   

3.
In concentrated colloidal mixtures different caging mechanisms exist and result in different arrested states: repulsive, attractive and asymmetric glasses as well as gel-like states. We discuss their microscopic structure, dynamics and rheological response. Special attention is given to the non-linear mechanical behaviour, in particular the transient rheological response after shear is started. Steps in both, shear rate and shear stress (creep test), are considered. The macroscopic viscoelastic response is related to the microscopic structure and dynamics on the individual-particle level.  相似文献   

4.
Z. Q. Zhang  W. C. Cui  Y. S. Qin 《哲学杂志》2018,98(19):1744-1764
The multiplication and interaction of self-organised shear bands often transform to a stick-slip behaviour of a major shear band along the primary shear plane, and ultimately the major shear band becomes runaway and terminates the plasticity of bulk metallic glasses (BMGs). Here, we examined the deformation behaviours of the nanoscale phase-separating Zr65–xCu25Al10Fex (x = 5 and 7.5 at.%) BMGs. The formation of multi-step phase separation, being mainly governed by nucleation and growth, results in the microstructural inhomogeneity on a wide range of length-scales and leads to obviously macroscopic and repeatable ductility. The good deformability can be attributed to two mechanisms for stabilizing shear banding process, i.e. the mutual interaction of multiple shear bands away from the major shear band and the delaying slip-to-failure of dense fine shear bands around the major shear band, both of which show a self-organised criticality yet with different power-law exponents. The two mechanisms could come into effect in the intermediate (stable) and later plastic deformation regime, respectively. Our findings provide a possibility to enhance the shear banding stability over the whole plastic deformation through a proper design of microstructure heterogeneities.  相似文献   

5.
As the most fundamental deformation mechanism in metallic glasses (MGs), the shear banding has attracted a lot of attention and interest over the years. However, the intrinsic properties of the shear band are affected and even substantially changed by the influence of non-rigid testing machine that cannot be completely removed in real compression tests. In particular, the duration of the shear banding event is prolonged due to the recovery of the stressed compliant frame of testing machine and therefore the temperature rise at the operating shear band is, more or less, underestimated in previous literatures. In this study, we propose a model for the ‘ideal’ shear banding in metallic glass. The compliance of the testing machine is eliminated, and the intrinsic shear banding process is extracted and investigated. Two important physical parameters, the sliding speed and the temperature of shear band, are calculated and analysed on the basis of the thermo-mechanical coupling. Strain-rate hardening is proposed to compensate thermal softening and stabilise the shear band. The maximum value of the sliding speed is found to be on the order of 10 m/s at least, and the critical temperature at which strain-rate hardening begins to take effect should reach as high as 0.9Tg (Tg is the glass transition temperature) for a stable shear banding event in metallic glass according to the early experimental data. This model can help to understand and control the shear banding and therefore the deformation in MGs.  相似文献   

6.
We report experiments on hard-sphere colloidal glasses that show a type of shear banding hitherto unobserved in soft glasses. We present a scenario that relates this to an instability due to shear-concentration coupling, a mechanism previously thought unimportant in these materials. Below a characteristic shear rate γ(c) we observe increasingly nonlinear and localized velocity profiles. We attribute this to very slight concentration gradients in the unstable flow regime. A simple model accounts for both the observed increase of γ(c) with concentration, and the fluctuations in the flow.  相似文献   

7.
There is growing evidence that the flow of driven amorphous solids is not homogeneous, even if the macroscopic stress is constant across the system. Via event-driven molecular dynamics simulations of a hard sphere glass, we provide the first direct evidence for a correlation between the fluctuations of the local volume fraction and the fluctuations of the local shear rate. Higher shear rates do preferentially occur at regions of lower density and vice versa. The temporal behavior of fluctuations is governed by a characteristic time scale, which, when measured in units of strain, is independent of shear rate in the investigated range. Interestingly, the correlation volume is also roughly constant for the same range of shear rates. A possible connection between these two observations is discussed.  相似文献   

8.
After surveying the experimental evidence for concentration coupling in the shear banding of wormlike micellar surfactant systems, we present flow phase diagrams spanned by shear stress Σ (or strain rate ) and concentration, calculated within the two-fluid, non-local Johnson-Segalman (d-JS-φ) model. We also give results for the macroscopic flow curves Σ(ˉ,ˉφ) for a range of (average) concentrations ˉφ. For any concentration that is high enough to give shear banding, the flow curve shows the usual non-analytic kink at the onset of banding, followed by a coexistence “plateau” that slopes upwards, dΣ/dˉ > 0. As the concentration is reduced, the width of the coexistence regime diminishes and eventually terminates at a non-equilibrium critical point [Σc,ˉφcc]. We outline the way in which the flow phase diagram can be reconstructed from a family of such flow curves, Σ(ˉ,ˉφ), measured for several different values of ˉφ. This reconstruction could be used to check new measurements of concentration differences between the coexisting bands. Our d-JS-φ model contains two different spatial gradient terms that describe the interface between the shear bands. The first is in the viscoelastic constitutive equation, with a characteristic (mesh) length l. The second is in the (generalised) Cahn-Hilliard equation, with the characteristic length ξ for equilibrium concentration-fluctuations. We show that the phase diagrams (and so also the flow curves) depend on the ratio rl /ξ, with loss of unique state selection at r = 0. We also give results for the full shear-banded profiles, and study the divergence of the interfacial width (relative to l and ξ) at the critical point. Received: 20 December 2002 / Accepted: 24 April 2003 / Published online: 11 June 2003 RID="a" ID="a"e-mail: physf@irc.leeds.ac.uk RID="b" ID="b"e-mail: p.d.olmsted@leeds.ac.uk  相似文献   

9.
We present an analytical study of a toy model for shear banding, without normal stresses, which uses a piecewise linear approximation to the flow curve (shear stress as a function of shear rate). This model exhibits multiple stationary states, one of which is linearly stable against general two-dimensional perturbations. This is in contrast to analogous results for the Johnson-Segalman model, which includes normal stresses, and which has been reported to be linearly unstable for general two-dimensional perturbations. This strongly suggests that the linear instabilities found in the Johnson-Segalman can be attributed to normal stress effects.  相似文献   

10.
The strain localized phenomenon, so called shear bands (SBs), in an amorphous alloy have received a lot of attention in recent years. In this study, we microscopically investigated the nature and dynamics of multiple SBs using molecular dynamics model. In the SB region, intense shear-induced structural change occurred, typified by the annihilation of pentagonal short-range order, and significant localized heating accompanied with the SB propagation was observed. Moreover, a large number of fine SBs operated simultaneously at a high strain rate, whereas, only a few SBs appeared and propagated abruptly at a low strain rate. These results were discussed with respect to brittle/ductile deformation of bulk metallic glasses. PACS 31.15.xv; 62.20.F-; 81.05.Kf  相似文献   

11.
C. Thornton  L. Zhang 《哲学杂志》2013,93(21-22):3425-3452
Strain localisation and shear band formation is frequently observed during the handling and flow of dense phase particulate materials. However, a complete understanding of how shear bands form and what happens inside shear bands is still lacking. In order to address this problem, discrete particle simulations have been carried out to examine the detailed processes that occur at the grain scale associated with the initiation and development of shear bands. To reliably identify the continuum model applicable within a shear band is difficult due to the small number of particles/contacts involved. However, it is normally accepted that the mode of deformation within a shear band is one of simple shear. Consequently, simple shear simulations have been performed in order to determine the evolution of the stress tensor, dilation rate, and the principal directions of stress and strain-rate. It is demonstrated that the corresponding non-coaxial flow rule is equivalent to that suggested by Tatsuoka et al. (Géotechnique 38 148 (1988)). Furthermore, at fully developed flow when there is no further change in volume, the stress and strain-rate directions are coaxial and the flow rule is that proposed by Hill (The Mathematical Theory of Plasticity (Oxford University Press, 1950) p. 294).  相似文献   

12.
We examine the vitrification and melting of asymmetric star polymer mixtures by combining rheological measurements with mode coupling theory. We identify two types of glassy states, a single glass, in which the small component is fluid in the glassy matrix of the big one, and a double glass, in which both components are vitrified. Addition of small-star polymers leads to melting of both glasses, and the melting curve has a nonmonotonic dependence on the star-star size ratio. The phenomenon opens new ways for externally steering the rheological behavior of soft matter systems.  相似文献   

13.
By controlling the specimen aspect ratio and strain rate, compressive strains as high as 80% were obtained in an otherwise brittle metallic glass. Physical and mechanical properties were measured after deformation, and a systematic strain-induced softening was observed which contrasts sharply with the hardening typically observed in crystalline metals. If the deformed glass is treated as a composite of hard amorphous grains surrounded by soft shear-band boundaries, analogous to nanocrystalline materials that exhibit inverse Hall-Petch behavior, the correct functional form for the dependence of hardness on shear-band spacing is obtained. Deformation-induced softening leads naturally to shear localization and brittle fracture.  相似文献   

14.
We study a simple model of shear banding in which the flow-induced phase is destabilized by coupling between flow and microstructure (wormlike micellar length). By varying the strength of instability and the applied shear rate, we find a rich variety of oscillatory and chaotic shear banded flows. At low shear and weak instability, the induced phase pulsates next to one wall of the flow cell. For stronger instability, high shear pulses ricochet across the cell. At high shear we see oscillating bands on either side of central defects. We discuss our results in the context of recent experiments.  相似文献   

15.
Concentrated hard-sphere suspensions and glasses are investigated with rheometry, confocal microscopy, and Brownian dynamics simulations during start-up shear, providing a link between microstructure, dynamics, and rheology. The microstructural anisotropy is manifested in the extension axis where the maximum of the pair-distribution function exhibits a minimum at the stress overshoot. The interplay between Brownian relaxation and shear advection as well as the available free volume determine the structural anisotropy and the magnitude of the stress overshoot. Shear-induced cage deformation induces local constriction, reducing in-cage diffusion. Finally, a superdiffusive response at the steady state, with a minimum of the time-dependent effective diffusivity, reflects a continuous cage breakup and reformation.  相似文献   

16.
A general theory of vibrational excitations in metallic glasses is presented, based on the disclination model of the structure of solids with local icosahedral symmetry. The representation of nonorthogonal plane waves is used, which allows one to separate the diagonal terms in the Hamiltonian, and also the terms describing scattering of these waves by fluctuations of the density and the force constants, and by topological structure fluctuations. We have derived and solved the Dyson equation for the Green’s function. We have obtained an analytical expression for the density of vibrational states of the glass. The nature of the soft vibrational modes is discussed. It is shown that these modes are resonant modes, whose presence is due to the fluctuations of the density and the force constants. Special attention is given to the role of forward scattering and the nature of the spatial variation in the amplitude of the given modes. Fiz. Tverd. Tela (St. Petersburg) 41, 372–379 (March 1999)  相似文献   

17.
The magnetic domains on the surface of amorphous alloys of the composition Fe40Ni40B20 and Fe50Ni30B20 were observed by means of the scanning electron microscope. The details of the experimental arrangement are described that enhance the s.c. type II magnetic contrast and enable us to apply a static magnetic field in the plane of the sample. The displacement of the domain walls under the influence of the applied field were measured and are discussed.Dedicated to Dr. Svatopluk Krupika on the occasion of his 65th birthday.One of the authors (K. Z.) is grateful to Dr. S. Krupika who initiated him in the field of magnetization processes and never lost patience with him in numerous discussions in the course of several decades. We also benefited from the discussions with Dr. I. Tomá after the presentation of our preliminary results at the Second Czechoslovak-Soviet Symposium on the Physics of Magnetic Domains in May 1986.  相似文献   

18.
This paper describes nonlinear shear wave experiments conducted in soft solids with transient elastography technique. The nonlinear solutions that theoretically account for plane and nonplane shear wave propagation are compared with experimental results. It is observed that the cubic nonlinearity implied in high amplitude transverse waves at f(0)=100 Hz results in the generation of odd harmonics 3f(0), 5f(0). In the case of the nonlinear interaction between two transverse waves at frequencies f(1) and f(2), the resulting harmonics are f(i)+/-2f(j)(i,j=1,2). Experimental data are compared to numerical solutions of the modified Burgers equation, allowing an estimation of the nonlinear parameter relative to shear waves. The definition of this combination of elastic moduli (up to fourth order) can be obtained using an energy development adapted to soft solid. In the more complex situation of nonplane shear waves, the quadratic nonlinearity gives rise to more usual harmonics, at sum and difference frequencies, f(i)+/-f(j). All components of the field have to be taken into account.  相似文献   

19.
Using fast confocal microscopy we image the three-dimensional dynamics of particles in a yielded hard-sphere colloidal glass under steady shear. The structural relaxation, observed in regions with uniform shear, is nearly isotropic but is distinctly different from that of quiescent metastable colloidal fluids. The inverse relaxation time tau(alpha)(-1) and diffusion constant D, as functions of the local shear rate gamma*, show marked shear thinning with tau(alpha)(-1) proportional to D proportional to gamma*(0.8) over more than two decades in gamma*. In contrast, the global rheology of the system displays Herschel-Bulkley behavior. We discuss the possible role of large scale shear localization and other mechanisms in generating this difference.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号