首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Yang Liu  Le Luo 《Frontiers of Physics》2021,16(1):12504-175
Chemistry in the ultracold regime enables fully quantum-controlled interactions between atoms and molecules,leading to the discovery of the hidden mechanisms in chemical reactions which are usually curtained by thermal averaging in the high temperature.Recently a couple of diatomic molecules have been cooled to ultracold regime based on laser cooling techniques,but the chemistry associated with these simple molecules is highly limited.In comparison,free radicals play a major role in many important chemical reactions,but yet to be cooled to submillikelvin temperature.Here we propose a novel method of decelerating CH3,the simplest polyatomic free radical,with lithium atoms simultaneously by travelling wave magnetic decelerator.This scheme paves the way towards co-trapping CH3and lithium,so that sympathetical cooling can be used to preparing ultracold free radical sample.  相似文献   

2.
陈良超  孟增明  王鹏军 《物理学报》2017,66(8):83701-083701
采用二维磁光阱产生了-个快速~(87)Rb原子流,并在高真空的三维磁光阱中实现了~(87)Rb原子的快速俘获,进一步采用射频蒸发冷却技术实现了原子云的预冷却,然后将原子转移到远失谐的光学偶极阱中蒸发得到了玻色-爱因斯坦凝聚体.实验上可以在25 s内完成三维磁光阱的装载(约1.0×10~(10)个~(87)Rb原子),然后经过16 s的冷却过程最终在光学偶极阱中获得5.0×10~5个原子的玻色-爱因斯坦凝聚体.实验重点研究了二维磁光阱的优化设计和采用蓝失谐大功率光束对四极磁阱零点的堵塞,抑制四极磁阱中原子的马约拉纳损耗,更加有效地对原子云进行预冷却.  相似文献   

3.
We report an apparatus and method capable of producing Bose-Einstein condensates (BECs) of ~1 × 106 87Rb atoms, and ultimately designed for sympathetic cooling of 133Cs and the creation of ultracold RbCs molecules. The method combines several elements: (i) the large recapture of a magnetic quadrupole trap from a magneto-optical trap; (ii) efficient forced RF evaporation in such a magnetic trap; (iii) the gain in phase-space density obtained when loading the magnetically trapped atoms into a far red-detuned optical dipole trap, and (iv) efficient evaporation to BEC within the dipole trap. We demonstrate that the system is capable of sympathetically cooling the |F = 1, m F = ?1〉 and |1,0? sublevels with |1, +1〉 atoms. Finally we discuss the applicability of the method to sympathetic cooling of 133Cs with 87Rb.  相似文献   

4.
We propose a new method of cooling and phase space compression that requires each atom to scatter only one photon. We consider the specific example of rubidium-87 atoms confined to a magnetic trap and provide realistic estimates. Beyond a demonstration in atomic rubidium, this method could enable cooling of atoms and molecules that do not have cycling transitions.  相似文献   

5.
三维拉曼边带冷却后的铯原子样品装载于一个磁悬浮的大体积交叉光学偶极阱中, 继续加载一个小体积的光学偶极阱后, 实现了Dimple光学偶极阱对铯原子的高效装载. 对不同磁场下磁悬浮大体积光阱的有效装载势能进行理论分析与实验测量, 得出最优化的梯度磁场和均匀偏置磁场, 获得了基于磁悬浮大体积光阱的Dimple光学偶极阱的装载势能曲线, 实现了Dimple光学偶极阱对经拉曼边带冷却后俘获在磁悬浮的大体积光阱中的铯原子样品的有效装载. 比较了Dimple光学偶极阱分别从拉曼边带冷却、大体积的交叉光阱和消除反俘获势后的磁悬浮大体积光阱装载的结果, 将俘获在磁悬浮大体积光阱中的铯原子样品装载到Dimple光学偶极阱, 铯原子样品的密度提高了约15倍.  相似文献   

6.
An efficient cooling mechanism of magnetically trapped, highly excited antihydrogen (H) atoms is presented. This cooling, in addition to the expected evaporative cooling, results in trapping of a large number of H atoms in the ground state. It is found that the final fraction of trapped atoms is insensitive to the initial distribution of H magnetic quantum numbers. Expressions are derived for the cooling efficiency, demonstrating that magnetic quadrupole (cusp) traps provide stronger cooling than higher order magnetic multipoles. The final temperature of H confined in a cusp trap is shown to depend as approximately 2.2T(n0)n(0)(-2/3) on the initial Rydberg level n0 and temperature T(n0).  相似文献   

7.
A semiempirical parametric method is proposed for modeling three-dimensional (time-resolved) vibronic spectra of polyatomic molecules. The method is based on the use of the fragment approach in the formation of molecular models for excited electronic states and parametrization of these molecular fragments by modeling conventional (one-dimensional) absorption and fluorescence spectra of polyatomic molecules. All matrix elements that are required for calculations of the spectra can be found by the methods developed. The time dependences of the populations of a great number (>103) of vibronic levels can be most conveniently found by using the iterative numerical method of integration of kinetic equations. Convenient numerical algorithms and specialized software for PC are developed. Computer experiments showed the possibility of the real-time modeling three-dimensional spectra of polyatomic molecules containing several tens of atoms.  相似文献   

8.
We consider how trapped molecules can be sympathetically cooled by ultracold atoms. As a prototypical system, we study LiH molecules co-trapped with ultracold Li atoms. We calculate the elastic and inelastic collision cross sections of 7LiH + 7Li with the molecules initially in the ground state and in the first rotationally excited state. We then use these cross sections to simulate sympathetic cooling in a static electric trap, an ac electric trap, and a microwave trap. In the static trap we find that inelastic losses are too great for cooling to be feasible for this system. The ac and microwave traps confine ground-state molecules, and so inelastic losses are suppressed. However, collisions in the ac trap can take molecules from stable trajectories to unstable ones and so sympathetic cooling is accompanied by trap loss. In the microwave trap there are no such losses and sympathetic cooling should be possible.  相似文献   

9.
刘勋铭  王育竹 《光学学报》1998,18(9):153-1159
表述了包含钠24个磁能级的原子在一维σ^+-σ^-冷却光和再抽运光中各磁子能级粒子分布随时间变化的公式及多普勒冷却力,计算并讨论了不同冷却光失谱情况,不同抽抽运光强和失谐情况下原子的多普勒冷却力的上能级粒子数占基态总粒子数的比例P(v)随速度的变化,该模型的计算结果能解释在磁光陷阱(MOT)实验中的现象和和为磁光陷阱实验选择参数时的参考。  相似文献   

10.
Laser cooling on weak transitions is a useful technique for reaching ultracold temperatures in atoms with multiple valence electrons. However, for strongly magnetic atoms a conventional narrow-line magneto-optical trap (MOT) is destabilized by competition between optical and magnetic forces. We overcome this difficulty in Er by developing an unusual narrow-line MOT that balances optical and magnetic forces using laser light tuned to the blue side of a narrow (8 kHz) transition. The trap population is spin polarized with temperatures reaching below 2 muK. Our results constitute an alternative method for laser cooling on weak transitions, applicable to rare-earth-metal and metastable alkaline earth elements.  相似文献   

11.
We report on a novel mechanism that allows for strong laser cooling of atoms that do not have a closed cycling transition. This mechanism is observed in a magneto-optical trap (MOT) for erbium, an atom with a very complex energy level structure with multiple pathways for optical-pumping losses. We observe surprisingly high trap populations of over 10(6) atoms and densities of over 10(11) atoms cm(-3), despite the many potential loss channels. A model based on recycling of metastable and ground state atoms held in the quadrupole magnetic field of the trap explains the high trap population, and agrees well with time-dependent measurements of MOT fluorescence. The demonstration of trapping of a rare-earth atom such as erbium opens a wide range of new possibilities for practical applications and fundamental studies with cold atoms.  相似文献   

12.
We demonstrated laser cooling and trapping of thulium atoms at sub-Doppler temperatures in a magneto-optical trap (MOT). Up to 3 × 106 thulium atoms were trapped in the MOT at temperatures down to 25(5) μK which is approximately 10 times lower than the Doppler limit. The lifetime of atoms in the MOT varied between 0.3–1.5 s and was restricted mostly by optical leaks from the upper cooling level. The lower limit for the leaking rate was estimated to be 22(6) s−1. Due to a big magnetic moment of Tm atoms, a part of them were trapped in a magnetic trap from the quadrupole field of the MOT. We observed about 3 × 104 purely magnetically trapped atoms at temperature of 25 μK with a lifetime in the trap of 0.5 s. Also we set up a “dark” MOT consisting of six crossed hollow beams which increased the number of trapped atoms by a factor of 5 leading to 1.5 × 107 atoms at the expense of higher temperature.  相似文献   

13.
Here we report on the accumulation of ground-state NH molecules in a static magnetic trap. A pulsed supersonic beam of NH (a1Δ) radicals is produced and brought to a near standstill at the center of a quadrupole magnetic trap using a Stark decelerator. There, optical pumping of the metastable NH radicals to the X3Σ? ground state is performed by driving the spin-forbidden A3Π ← a1Δ transition, followed by spontaneous A → X emission. The resulting population in the various rotational levels of the ground state is monitored via laser induced fluorescence detection. A substantial fraction of the ground-state NH molecules stays confined in the several milliKelvin deep magnetic trap. The loading scheme allows one to increase the phase-space density of trapped molecules by accumulating packets from consecutive deceleration cycles in the trap. In the present experiment, accumulation of six packets is demonstrated to result in an overall increase of only slightly over a factor of two, limited by the trap-loss and reloading rates.  相似文献   

14.
We present an experimental and theoretical study of atom-molecule collisions in a mixture of cold, trapped N atoms and NH molecules at a temperature of ~600 mK. We measure a small N+NH trap loss rate coefficient of k(loss)(N+NH)=9(5)(3)×10(-13) cm(3)?s(-1). Accurate quantum scattering calculations based on ab initio interaction potentials are in agreement with experiment and indicate the magnetic dipole interaction to be the dominant loss mechanism. Our theory further indicates the ratio of N+NH elastic-to-inelastic collisions remains large (>100) into the mK regime.  相似文献   

15.
《中国物理 B》2021,30(6):63401-063401
We report the production of~(39) K and~(87) Rb Bose–Einstein condensates(BECs) in the lowest hyperfine states |F =1, m_F = 1 simultaneously. We collect atoms in bright/dark magneto-optical traps(MOTs) of~(39) K/~(87) Rb to overcome the light-assisted losses of~(39) K atoms. Gray molasses cooling on the D1 line of the~(39) K is used to effectively increase the phase density, which improves the loading efficiency of~(39) K into the quadrupole magnetic trap. Simultaneously, the normal molasses is employed for~(87) Rb. After the microwave evaporation cooling on~(87) Rb in the optically plugged magnetic trap,the atoms mixture is transferred to a crossed optical dipole trap, where the collisional properties of the two species in different combinations of the hyperfine states are studied. The dual species BECs of~(39) K and~(87) Rb are obtained by further evaporative cooling in an optical dipole trap at a magnetic field of 372.6 G with the background repulsive interspecies scattering length a_(KRb)= 34 a_0(a_0 is the Bohr radius) and the intraspecies scattering length a_K= 20.05 a_0.  相似文献   

16.
Bose-Einstein condensation (BEC) in a atomic cesium gas prepared in a low field seeker Zeeman sublevel and confined in a magnetic trap has been thwarted by a high cross-section of inelastic spin-flip collisions. A recent experiment [1] succeeded in reaching BEC for cesium atoms using all optical methods and tuning the scattering length. We will discuss a hybrid magnetic and optical trap for cesium atoms in the true hyperfine ground state, the high field seeker Zeeman sublevel, F = m F = 3. Although this trap allows only one-dimensional (1D) evaporative cooling, we show that a route towards BEC with such a trap should be possible. We present simulations of 1D evaporative cooling, which shows that a high phase space density (PSD) of 0.1 could be reached in less than 10 seconds.Received: 25 July 2003PACS: 03.75.Hh Static properties of condensates; thermodynamical, statistical and structural properties - 05.30.Jp Boson systems - 32.80.Pj Optical cooling of atoms; trappingLaboratoire Aimé Cotton is associated with University of Paris-Sud.  相似文献   

17.
马红玉  成华东  王育竹  刘亮 《中国物理 B》2008,17(11):4180-4183
This paper presents an experimental demonstration of light-induced evaporative cooling in a magneto-optical trap. An additional laser is used to interact with atoms at the edge of the atomic cloud in the trap. These atoms get an additional force and evaporated away from the trap by both the magnetic field and laser fields. The remaining atoms have lower kinetic energy and thus are cooled. It reports the measurements on the temperature and atomic number after the evaporative cooling with different parameters including the distance between the laser and the centre of the atomic cloud, the detuning, the intensity. The results show that the light-induced evaporative cooling is a way to generate an ultra-cold atom source.  相似文献   

18.
讨论了三能级原子在消逝波光场作用下的Sisyphus冷却和几何冷却机制,通过蒙特卡罗(Monte-Carlo)方程分别模拟了消逝波光场在方锥形势阱和圆锥阱两种情况下对原子冷却的动力学过程,并计算了原子在不同的失谐量、激光功率及消逝波的判断宽度下的冷却情况。结果表明,增大消逝波的激光功率能有效地减少原子的损耗,但对冷却结果影响不大;而消逝波的判断宽度不够宽时,结果偏差较大;对于方锥形势阱,失谐量趣小  相似文献   

19.
The experiments on the laser cooling and trapping of ytterbium atoms are reported, including the two-dimensional transversal cooling, longitudinal velocity Zeeman deceleration, and a magneto-optical trap with a broadband transition at a wavelength of 399 nm. The magnetic field distributions along the axis of a Zeeman slower were measured and in a good agreement with the calculated results. Cold ytterbium atoms were produced with a number of about 107 and a temperature of a few milli-Kelvin. In addition, using a 556-nm laser, the excitations of cold ytterbium atoms at 1S0-3P1 transition were observed. The ytterbium atoms will be further cooled in a 556-nm magneto-optical trap and loaded into a three-dimensional optical lattice to make an ytterbium optical clock.   相似文献   

20.
王杰英  刘贝  刁文婷  靳刚  何军  王军民 《物理学报》2014,63(5):53202-053202
实验中首先通过增大四极磁场梯度、提高背景真空度、缩小冷却俘获激光光束直径的方法获得了磁光阱中单原子的装载.其次,通过减小冷却光失谐量、适当增加其光强、同时使用偏振光谱锁频技术抑制冷却光噪声的方法得到了磁光阱中高信号背景比的单原子荧光信号.此外,通过实时反馈控制磁光阱四极磁场梯度的方法,在实验中实现了单原子98%的装载概率.使用Hamburg Brown-Twiss方案测量了磁光阱中的单原子在连续光激发下所辐射荧光的光子统计特性,得到二阶关联度g(2)(τ=0)=0.09.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号