首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
G.P. Raja Sekhar  Jai Prakash  Mirela Kohr 《PAMM》2008,8(1):10613-10614
In this paper, we consider the steady /oscillatory flow field within a porous particle contained in a fixed or fluidized bed, in which the spherical porous particle is placed in a spherical envelope of fluid. Stokes equations are employed inside the fluid envelope and Brinkman/Darcy equations are used inside the porous region. We compute drag force acting on the particle and hence the overall bed permeability of the bed. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
This paper concerns the slow viscous flow through an aggregate of concentric clusters of porous cylindrical particles with Happel boundary condition. An aggregate of clusters of porous cylindrical particles is considered as a hydro-dynamically equivalent to solid cylindrical core with concentric porous cylindrical shell. The Brinkman equation inside the porous cylindrical shell and the Stokes equation outside the porous cylindrical shell in their stream function formulations are used. The drag force acting on each porous cylindrical particle in a cell is evaluated. In certain limiting cases, drag force converges to pre-existing analytical results, such as, the drag on a porous circular cylinder and the drag on a solid cylinder in a Happel unit cell. Representative results are then discussed and presented in graphical forms. The hydrodynamic permeability of the membrane built up from porous particles is evaluated. The variation of hydrodynamic permeability with different parameters is graphically presented. Some new results are reported for flow pattern in the porous region. Being in resemblance with the model of colloid particles with a coating of porous layers due to adsorption phenomenon, results obtained through this model can be useful to study the membrane filtration process.  相似文献   

3.
A three-dimensional (3D) model based on the first principles of mass, momentum and energy was developed that numerically simulates the processes of static and forward smoldering in a porous packed bed of plant materials. The packed bed contains cellulose material or tobacco (cigarette) wrapped in a porous paper and surrounded by an ambient air. Other major characteristics of the model are including the effects of buoyancy forces in the flow field, separate treatment of solid and gas in a thermally non-equilibrium environment, and use of multi-precursor kinetic models for the pyrolysis of staring material and oxidation of char. The changes in porosity due to pyrolysis and char oxidation and the effect of porosity on the bed permeability and gas diffusivity are included. The mass, momentum, energy, and species transport equations are solved in a discretized computational domain using a commercially available computational fluid dynamics (CFD) code. The simulation results show that the model reasonably reproduces the major features of a burning cigarette during smoldering and puffing and are in a good agreement with the existing experimental results for cigarettes. Results include the velocity profiles, gas and solid temperatures, coal shape, burn rates, profile and transport of gas and vapor species throughout the packed bed, dilution through the wrapper paper and ventilation in the filter section, and the mass fraction of some pyrolysis and oxidation products in the mainstream and sidestream flows.  相似文献   

4.
The well-known Masliyah–Lockett–Bassoon (MLB) model for sedimentation of small particles is extended to fluidization of polydisperse suspensions. For N particle species that differ in size and density, this model leads to a first-order system of N conservation laws, which in general is of mixed (in the case N = 2, hyperbolic–elliptic) type. By a simple algebraic steady-state analysis, we derive necessary compatibility conditions on the size and density parameters that admit the formation of stationary fluidized beds. We then proceed to determine the composition of polydisperse fluidized beds of given compatible species by varying the fluidization velocity and the initial composition of the suspensions, and prove that, within the framework of the MLB model combined with the Richardson–Zaki formula, the constructed bidisperse beds always cause the equations to be hyperbolic. This means that these states are always predicted to be stable. The transient behaviour of the MLB model applied to fluidization is illustrated by three numerical examples, in which the system of conservation laws is solved for N = 2, N = 3 and N = 5, respectively. These examples illustrate the effects of bed expansion and layer inversion caused by successively increasing the applied fluidization velocity and show that the predicted fluidized states are indeed attained.  相似文献   

5.
Under oscillatory Stokes flow, dynamic permeability of assemblage of soft spherical particles is derived. For the bed of soft particles, the fluid‐particle system is represented as an assemblage of uniform permeable spheres fixed in space. Each sphere, with a surrounding envelope of fluid, is uncoupled from the system and considered separately. This model is popularly known as cell model. Oscillatory Stokes equations are employed inside the fluid envelope, and oscillatory Brinkman equations are used inside the porous region. Four known boundary conditions namely: Happel's, Kuwabara's, Kvashnin's, and Cunningham's are considered on the outer boundary and results are compared. The behavior of dynamic permeability is analyzed with various parameters such as Darcy number (Da), frequency parameter (?), porosity (φ), and viscosity ratio (δ). Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

6.
A numerical model is developed to study magnetohydrodynamics (MHD) mixed convection from a heated vertical plate embedded in a Newtonian fluid saturated sparsely packed porous medium by considering the variation of permeability, porosity and thermal conductivity. The boundary layer flow in the porous medium is governed by Forchheimer–Brinkman extended Darcy model. The conservation equations that govern the problem are reduced to a system of non-linear ordinary differential equations by using similarity transformations. Because of non-linearity, the governing equations are solved numerically. The effects of magnetic field on velocity and temperature distributions are studied in detail by considering uniform permeability (UP) and variable permeability (VP) of the porous medium and the results are discussed graphically. Besides, skin friction and Nusselt number are also computed for various physical parameters governing the problem under consideration. It is found that the inertial parameter has a significant influence in increasing the flow field and the rate of heat transfer for variable permeability case. The important finding of the present work is that the magnetic field has considerable effects on the boundary layer velocity and on the rate of heat transfer for variable permeability of the porous medium. Further, the results obtained under the limiting conditions were found to be in good agreement with the existing ones.  相似文献   

7.
This work is concerned with an analysis of polydisperse spray droplets distribution on the thermal explosion processes. In many engineering applications it is usual to relate to the practical polydisperse spray as a monodisperse spray. The Sauter Mean Diameter (SMD) and its variations are frequently used for this purpose [13]. The SMD and its modifications depend only on “integral” characterization of polydisperse sprays and can be the same for very different types of polydisperse spray distributions.The current work presents a new, simplified model of the thermal explosion in a combustible gaseous mixture containing vaporizing fuel droplets of different radii (polydisperse). The polydispersity is modeled using a probability density function (PDF) that corresponds to the initial distribution of fuel droplets size. This approximation of polydisperse spray is more accurate than the traditional ‘parcel’ approximation and permits an analytical treatment of the simplified model. Since the system of the governing equations represents a multi-scale problem, the method of invariant (integral) manifolds is applied.An explicit expression of the critical condition for thermal explosion limit is derived analytically. Numerical simulations demonstrate an essential dependence of these thermal explosion conditions on the PDF type and represent a natural generalization of the thermal explosion conditions of the classical Semenov theory.  相似文献   

8.
We have used effective medium model for beds of circular cylindrical porous fibres in order to estimate the overall bed permeability (OBP). It is assumed that a representative circular porous cylindrical fibre is inside a fluid envelope beyond which effective medium is used. Both inside the cylindrical fibre and in the effective medium, Brinkman equation is used, however of different permeabilities and in the fluid envelope Stokes equation is used. The OBP corresponding to the porous fibres is estimated when the flow direction is perpendicular to the axis of the cylindrical fibres as well as parallel to the fibres. This in turn is used to estimate the OBP corresponding to a collection of porous cylindrical fibres that are randomly oriented. We have compared the results with some existing literature.  相似文献   

9.
10.
The present article investigates the overall bed permeability of an assemblage of porous particles. For the bed of porous particles, the fluid-particle system is represented as an assemblage of uniform porous spheres fixed in space. Each sphere, with a surrounding envelope of fluid, is uncoupled from the system and considered separately. This model is popularly known as cell model. Stokes equations are employed inside the fluid envelope and Brinkman equations are used inside the porous region. The stress jump boundary condition is used at the porous-liquid interface together with the continuity of normal stress and continuity of velocity components. On the surface of the fluid envelope, three different possible boundary conditions are tested. The obtained expression for the drag force is used to estimate the overall bed permeability of the assemblage of porous particles and the behavior of overall bed permeability is analyzed with various parameters like modified Darcy number (Da*), stress jump coefficient (??), volume fraction (??), and effective viscosity.  相似文献   

11.
《Applied Mathematical Modelling》2014,38(17-18):4291-4307
Recent research has shown the potential of membrane-assisted fluidized bed reactors for various applications, and for ultra-pure hydrogen production in particular. Due to the excellent mass transfer characteristics of fluidized beds, concentration polarization (i.e. mass transfer limitation) can be overcome and the production capacity of membrane-assisted fluidized bed reactors could be further improved by maximizing the installed membrane area per unit volume, leading to the concept of a micro-structured membrane-assisted fluidized bed reactor. In this study, numerical simulations have been systematically carried out with a discrete particle model to investigate in detail the effects of gas addition and extraction through the confining porous membrane walls on the hydrodynamic characteristics of a single membrane-assisted micro fluidized bed compartment. In particular, the effect of the permeation ratio (amount of gas permeated through the membrane relative to the amount fed) and the installed membrane area on the hydrodynamics was investigated. Gas addition or extraction via the porous membrane walls confining the emulsion phase was simulated via inward or outward directed fluxes of the gas phase, which was found to have a very pronounced influence on the bed hydrodynamics. The effects of gas permeation on the solids circulation pattern, solids holdup distribution and porosity probability density function in membrane-assisted micro fluidized beds have been discussed in great detail. It has been found that gas permeation can have an adverse effect on the bed expansion caused by gas by-passing either through the bed center for the case of gas extraction or close to the membrane walls for the case of gas addition. In addition, the formation of densified zones (increased solids holdup) close to the membrane wall that was observed in case of gas extraction may increase the bed-to-membrane mass transfer resistance. These effects may strongly decrease the gas–solid contacting and the gas residence time, which may deteriorate the reactor performance. On the other hand, it is shown that these problems caused by gas permeation may be avoided by properly tuning the gas velocity through the membrane via membrane area and other design parameters and operating conditions.  相似文献   

12.
Shelly Arora  S.S. Dhaliwal  V.K. Kukreja 《PAMM》2007,7(1):2150027-2150028
Flow of fluid through packed bed of porous particles is modelled with the help of Peclet number (Pe) and Biot number (Bi). Packed bed is divided into three zones, flowing liquor, intrapore solute present in pores of particles and solute adsorbed on particle surface. Langmuir isotherm is used to describe the relationship between intrapore solute concentration and concentration of solute adsorbed on particle surface, whereas the bulk fluid concentration and the intrapore solute concentration are related by linear adsorption isotherm. Model predicted values are also compared with the experimental values. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

13.
Claas Vortmann 《PAMM》2004,4(1):500-501
With regard to future calculations of the combustion inside a packed bed of wooden particles, the drying process of a single wet particle is simulated in the present study. Essentially, conservation equations in spherical coordinates are solved by a finite volume approach for the interior of the single wooden particle. It is shown that a thin transition zone between the wet and the dry area exists during evaporation. The fundamental reasons are pointed out. Furthermore, the high velocity values in the transition zone are explained physically. (© 2004 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

14.
In this paper we develop a mathematical model for packed-bed adsorption of a single component, directed toward the purification of β-lactamic antibiotics. The model describes the removal of sorbates from an aqueous stream entering a bed packed with spherical sorbent particles. Then, assuming that the adsorption isotherm is linear, an exact solution for this model is found.  相似文献   

15.
Drug delivery technologies are an important area within biomedicine. Targeted drug delivery aims to reduce the undesired side effects of drug usage by directing or capturing the active agents near a desired site within the body. This is particularly beneficial in, for instance, cancer chemotherapy, where the side effects of general (systemic) drug administration can be severe.One approach to targeted drug delivery uses magnetic nanoparticles as the constituents of carriers for the desired active agent. Once injected into the body, the behaviour of these magnetic carriers can be influenced and controlled by magnetic fields. In implant assisted magnetic drug targeting systems a magnetic implant, typically a stent, wire or spherical seed can be used to target sites deep within the body as the implant acts as a focus for the resulting magnetic force. This can be easily understood as the force depends on the gradient of the magnetic field and the gradient near the implant is large.In designing such a system many factors need to be considered including physical factors such as the size and nature of the implants and carriers, and the fields required. Moreover, the range of applicability of these systems in terms of the regions of the vasculature system, from low blood velocity environments, such as capillary beds to higher velocity arteries, must be considered. Furthermore, assessment criteria for these systems are needed. Mathematical modelling and simulation has a valuable role to play in informing in vitro and in vivo experiments, leading to practical system design.Specifically, the implant assisted magnetic drug targeting systems of Avilés, Ebner and Ritter are considered within this review, and two dimensional mathematical modelling is performed using the open source C++ finite volume library OpenFOAM. In the first system treated, a large ferromagnetic particle is implanted into a capillary bed as a seed to aid collection of single domain nanoparticles (radius 20-100 nm). The Langevin function is used to calculate the magnetic moment of the particles, and the model is further adapted to treat the agglomeration of particles known to occur in these systems. This agglomeration can be attributed to interparticle interactions and here the magnetic dipole-dipole and hydrodynamic interactions for two mutually interacting nanoparticles are modelled, following Mikkelsen et al. who treated two particle interactions in microfluidic systems, with low magnetic field (0.05 T). The resulting predicted performance is found to both increase and decrease significantly depending on initial positions of the particles. Secondly, a ferromagnetic, coiled wire stent is implanted in a large arterial vessel. The magnetic dipole-dipole and hydrodynamic interactions for multiple particles are included. Different initial positions are considered and the system performance is assessed. Inclusion of these interactions yields predictions that are in closer agreement with the experimental results of Avilés et al. We conclude that the discrepancies between the non interacting theoretical predictions and the corresponding experimental results can (as suggested by Avilés et al.) be largely attributed to interparticle interactions and the consequent agglomeration.  相似文献   

16.
17.
It is well known that a uniform flow past a non-permeable rigid body does not exert a total force upon the surface of the body, however this is not the case when the body is permeable. Power et. al. (1984, 1986) first solved the problem of uniform potential flow past a two-dimensional permeable circular cylinder, with constant permeability, and found that the exterior flow exerts a drag force upon the surface of the cylinder independent of its size and secondly the problem when the uniform potential flow past a porous sphere, with constant permeability, in this case the exterior flow exerts a drag force on the sphere which is linearly dependent on the radius of the sphere. Here we will present the solution of two problems, a uniform potential flow past a porous circular cylinder and past a porous sphere, for each case the porous body is composed of two materials with different permeabilities. In both cases the total force exerted by the exterior flow upon the body is dependent on the thickness of the porous materials, and in the limit when the two permeabilities are equal, the previous results, circular cylinder and sphere, with constant permeability, are recovered. Atlhough, the mathematics involved in the solution of the present problem is simple, due to the nice boundary geometry of the bodies, the final expression for the total force found in each case is quite interesting on the way it depends on the permeability relation, in particular, in the limiting cases of a porous body with solid or hollow core.  相似文献   

18.
In the present work, experimental and numerical studies for the hydrodynamics in a gas–solid tapered fluidized bed have been carried out. The experimental results obtained by carrying out experiments in a tapered fluidized bed for glass bead (spherical) of 2.0 mm and dolomite (non-spherical particles) of 2.215 mm in diameter, were compared with the computational fluid dynamics (CFD) simulation results, using a commercial CFD software package, Fluent. The gas–solid flow was simulated using the Eulerian–Eulerian model and applying the kinetic theory of granular flow for solid particles. The Gidaspow drag model was used to calculate the gas–solid momentum exchange coefficients. Pressure drops predicted by the CFD simulations agreed reasonably well with experimental measurements for both types (spherical and non-spherical) of particles. Good agreement was also obtained between experimental and CFD predicted bed expansion ratios for both types of particles. Present study provides a useful basis for further works on the CFD of tapered fluidized bed.  相似文献   

19.
The motion of a solid and no-slipping particle immersed in a shear flow along a sufficiently porous slab is investigated. The fluid flow outside and inside of the slab is governed by the Stokes and Darcy equations, respectively, and the so-called Beavers and Joseph slip boundary conditions are enforced on the slab surface. The problem is solved for a distant particle with length scale a in terms of the small parameter a/d where d designates the large particle–slab separation. This is achieved by asymptotically inverting a relevant boundary-integral equation on the particle surface, which has been recently proposed for any particle location (distant or close particle) in Khabthani et al. (J Fluid Mech 713:271–306, 2012). It is found that at order O(a/d) the slab behaves for any particle shape as a solid plane no-slip wall while the slab properties (thickness, permeability, associated slip length) solely enter at O((a/d)2). Moreover, for a spherical particle, the numerical results published in Khabthani et al. (J Fluid Mech 713:271–306, 2012) perfectly agree with the present asymptotic analysis.  相似文献   

20.
To describe the hydrodynamic phenomena prevailing in large industrial scale fluidized beds continuum models are required. The flow in these systems depends strongly on particle–particle interaction and gas–particle interaction. For this reason, proper closure relations for these two interactions are vital for reliable predictions on the basis of continuum models. Gas–particle interaction can be studied with the use of the lattice Boltzmann model (LBM), while the particle–particle interaction can suitably be studied with a discrete particle model. In this work it is shown that the discrete particle model, utilizing a LBM based drag model, has the capability to generate insight and eventually closure relations in processes such as mixing, segregation and homogeneous fluidization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号