首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We generalise in three different directions two well-known results in universal algebra. Grätzer, Lakser and P?onka proved that independent subvarieties \({\mathcal{V}_{1}, \mathcal{V}_{2}}\) of a variety \({\mathcal{V}}\) are disjoint and such that their join \({\mathcal{V}_{1} \vee \mathcal{V}_{2}}\) (in the lattice of subvarieties of \({\mathcal{V}}\)) is their direct product \({\mathcal{V}_{1} \times \mathcal{V}_{2}}\) . Jónsson and Tsinakis provided a partial converse to this result: if \({\mathcal{V}}\) is congruence permutable and \({\mathcal{V}_{1}, \mathcal{V}_{2}}\) are disjoint, then they are independent (and so \({\mathcal{V}_{1} \vee \mathcal{V}_{2} = \mathcal{V}_{1} \times \mathcal{V}_{2}}\)). We show that (i) if \({\mathcal{V}}\) is subtractive, then Jónsson’s and Tsinakis’ result holds under some minimal assumptions; (ii) if \({\mathcal{V}}\) satisfies some weakened permutability conditions, then disjointness implies a generalised notion of independence and \({\mathcal{V}_{1} \vee \mathcal{V}_{2}}\) is the subdirect product of \({\mathcal{V}_{1}}\) and \({\mathcal{V}_2}\) ; (iii) the same holds if \({\mathcal{V}}\) is congruence 3-permutable.  相似文献   

2.
For a commutative C*-algebra \({\mathcal {A}}\) with unit e and a Hilbert \({\mathcal {A}}\)-module \({\mathcal {M}}\), denote by End\(_{{\mathcal {A}}}({\mathcal {M}})\) the algebra of all bounded \({\mathcal {A}}\)-linear mappings on \({\mathcal {M}}\), and by End\(^*_{{\mathcal {A}}}({\mathcal {M}})\) the algebra of all adjointable mappings on \({\mathcal {M}}\). We prove that if \({\mathcal {M}}\) is full, then each derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) is \({\mathcal {A}}\)-linear, continuous, and inner, and each 2-local derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) or End\(^{*}_{{\mathcal {A}}}({\mathcal {M}})\) is a derivation. If there exist \(x_0\) in \({\mathcal {M}}\) and \(f_0\) in \({\mathcal {M}}^{'}\), such that \(f_0(x_0)=e\), where \({\mathcal {M}}^{'}\) denotes the set of all bounded \({\mathcal {A}}\)-linear mappings from \({\mathcal {M}}\) to \({\mathcal {A}}\), then each \({\mathcal {A}}\)-linear local derivation on End\(_{{\mathcal {A}}}({\mathcal {M}})\) is a derivation.  相似文献   

3.
We consider a family \({\{T_{r}: [0, 1] \circlearrowleft \}_{r\in[0, 1]}}\) of Markov interval maps interpolating between the tent map \({T_{0}}\) and the Farey map \({T_{1}}\). Letting \({\mathcal{P}_{r}}\) denote the Perron–Frobenius operator of \({T_{r}}\), we show, for \({\beta \in [0, 1]}\) and \({\alpha \in (0, 1)}\), that the asymptotic behaviour of the iterates of \({\mathcal{P}_{r}}\) applied to observables with a singularity at \({\beta}\) of order \({\alpha}\) is dependent on the structure of the \({\omega}\)-limit set of \({\beta}\) with respect to \({T_{r}}\). The results presented here are some of the first to deal with convergence to equilibrium of observables with singularities.  相似文献   

4.
Let \({\mathcal{L} = \sum_{i=1}^m X_i^2}\) be a real sub-Laplacian on a Carnot group \({\mathbb{G}}\) and denote by \({\nabla_\mathcal{L} = (X_1,\ldots,X_m)}\) the intrinsic gradient related to \({\mathcal{L}}\). Our aim in this present paper is to analyze some features of the \({\mathcal{L}}\)-gauge functions on \({\mathbb{G}}\), i.e., the homogeneous functions d such that \({\mathcal{L}(d^\gamma) = 0}\) in \({\mathbb{G} \setminus \{0\}}\) , for some \({\gamma \in \mathbb{R} \setminus \{0\}}\). We consider the relation of \({\mathcal{L}}\)-gauge functions with: the \({\mathcal{L}}\)-Eikonal equation \({|\nabla_\mathcal{L} u| = 1}\) in \({\mathbb{G}}\); the Mean Value Formulas for the \({\mathcal{L}}\)-harmonic functions; the fundamental solution for \({\mathcal{L}}\); the Bôcher-type theorems for nonnegative \({\mathcal{L}}\)-harmonic functions in “punctured” open sets \({\dot \Omega:= \Omega \setminus \{x_0\}}\).  相似文献   

5.
Let \({\mathcal{P} \subset \mathbb{R}^{d}}\) and \({\mathcal{Q} \subset \mathbb{R}^{e}}\) be integral convex polytopes of dimension d and e which contain the origin of \({\mathbb{R}^{d}}\) and \({\mathbb{R}^{e}}\), respectively. We say that an integral convex polytope \({\mathcal{P}\subset \mathbb{R}^{d}}\) possesses the integer decomposition property if, for each \({n\geq1}\) and for each \({\gamma \in n\mathcal{P}\cap\mathbb{Z}^{d}}\), there exist \({\gamma^{(1)}, . . . , \gamma^{(n)}}\) belonging to \({\mathcal{P}\cap\mathbb{Z}^{d}}\) such that \({\gamma = \gamma^{(1)} +. . .+\gamma^{(n)}}\). In the present paper, under some assumptions, the necessary and sufficient condition for the free sum of \({\mathcal{P}}\) and \({\mathcal{Q}}\) to possess the integer decomposition property will be presented.  相似文献   

6.
Let \({\{\varphi_n(z)\}_{n\ge0}}\) be a sequence of inner functions satisfying that \({\zeta_n(z):=\varphi_n(z)/\varphi_{n+1}(z)\in H^\infty(z)}\) for every n ≥ 0 and \({\{\varphi_n(z)\}_{n\ge0}}\) have no nonconstant common inner divisors. Associated with it, we have a Rudin type invariant subspace \({\mathcal{M}}\) of \({H^2(\mathbb{D}^2)}\) . We write \({\mathcal{N}= H^2(\mathbb{D}^2)\ominus\mathcal{M}}\) . If \({\{\zeta_n(z)\}_{n\ge0}}\) ia a mutually prime sequence, then we shall prove that \({rank_{\{T^\ast_z,T^\ast_w\}} \mathcal{N}=1}\) and \({rank_{\{\mathcal{F}^\ast_z\}}(\mathcal{M}\ominus w\mathcal{M})=1}\) , where \({\mathcal{F}_z}\) is the fringe operator on \({\mathcal{M}\ominus w\mathcal{M}}\) .  相似文献   

7.
Given semisimple commutative Banach algebras \({\mathcal{A}}\) and \({\mathcal{B}}\) and a norm decreasing homomorphism \({\mathcal{T} : \mathcal{B} \rightarrow \mathcal{B}}\), we characterize the multipliers of the perturbed product Banach algebra \({\mathcal{A}\times_T \mathcal{B}}\). As an application it is shown that \({\mathcal{A}\times_T \mathcal{B}}\) has the Bochner–Schoenberg–Eberlein property if and only if both \({\mathcal{A}}\) and \({\mathcal{B}}\) have this property.  相似文献   

8.
The purpose of this paper is to identify all eight of the basic Cayley–Dickson doubling products. A Cayley–Dickson algebra \({\mathbb{A}_{N+1}}\) of dimension \({2^{N+1}}\) consists of all ordered pairs of elements of a Cayley–Dickson algebra \({\mathbb{A}_{N}}\) of dimension \({2^N}\) where the product \({(a, b)(c, d)}\) of elements of \({\mathbb{A}_{N+1}}\) is defined in terms of a pair of second degree binomials \({(f(a, b, c, d), g(a, b, c,d))}\) satisfying certain properties. The polynomial pair\({(f, g)}\) is called a ‘doubling product.’ While \({\mathbb{A}_{0}}\) may denote any ring, here it is taken to be the set \({\mathbb{R}}\) of real numbers. The binomials \({f}\) and \({g}\) should be devised such that \({\mathbb{A}_{1} = \mathbb{C}}\) the complex numbers, \({\mathbb{A}_{2} = \mathbb{H}}\) the quaternions, and \({\mathbb{A}_{3} = \mathbb{O}}\) the octonions. Historically, various researchers have used different yet equivalent doubling products.  相似文献   

9.
In this study, we first calculate the polar moment of inertia of orbit curves under one-parameter planar motion in the generalized complex plane \({{\mathbb{C}_p}}\) and then give the Holditch-type theorem for \({{\mathbb{C}_p}}\): When the fixed points \({X}\) and \({Y}\) on the moving plane \({{\mathbb{K}_p} \subset {\mathbb{C}_p}}\) trace the same curve \({k}\) with the polar moment of inertia \({{T_X}}\), the different point \({Z}\) on this line segment \({XY}\) traces another curve \({{k_Z}}\) with the polar moment of inertia \({{T_Z}}\) during the one-parameter planar motion in the fixed plane \({{\mathbb{K}'_p} \subset {\mathbb{C}_p}}\). Thus, we obtain that the difference between the polar moments of inertia of these curves \({( {{T_Z} - {T_X}} )}\) depends on the only the \({p}\)-distances of this points and \({p}\)-rotation angle of the motion, \({{T_X} - {T_Z} = {\delta _p}ab.}\)  相似文献   

10.
Let X be a non-void set and A be a subalgebra of \({\mathbb{C}^{X}}\) . We call a \({\mathbb{C}}\) -linear functional \({\varphi}\) on A a 1-evaluation if \({\varphi(f) \in f(X) }\) for all \({f\in A}\) . From the classical Gleason–Kahane–?elazko theorem, it follows that if X in addition is a compact Hausdorff space then a mapping \({\varphi}\) of \({C_{\mathbb{C}}(X) }\) into \({\mathbb{C}}\) is a 1-evaluation if and only if \({\varphi}\) is a \({\mathbb{C}}\) -homomorphism. In this paper, we aim to investigate the extent to which this equivalence between 1-evaluations and \({\mathbb{C}}\) -homomorphisms can be generalized to a wider class of self-conjugate subalgebras of \({\mathbb{C}^{X}}\) . In this regards, we prove that a \({\mathbb{C}}\) -linear functional on a self-conjugate subalgebra A of \({\mathbb{C}^{X}}\) is a positive \({\mathbb{C}}\) -homomorphism if and only if \({\varphi}\) is a \({\overline{1}}\) -evaluation, that is, \({\varphi(f) \in\overline{f\left(X\right)}}\) for all \({f\in A}\) . As consequences of our general study, we prove that 1-evaluations and \({\mathbb{C}}\) -homomorphisms on \({C_{\mathbb{C}}\left( X\right)}\) coincide for any topological space X and we get a new characterization of realcompact topological spaces.  相似文献   

11.
Suppose that \({\mathcal {M}}\) is a countably decomposable type II\({_1}\) von Neumann algebra and \({\mathcal {A}}\) is a separable, non-nuclear, unital C\({^*}\)-algebra. We show that, if \({\mathcal {M}}\) has Property \({\Gamma}\), then the similarity degree of \({\mathcal {M}}\) is less than or equal to 5. If \({\mathcal {A}}\) has Property c\({^*}\)-\({\Gamma}\), then the similarity degree of \({\mathcal {A}}\) is equal to 3. In particular, the similarity degree of a \({\mathcal {Z}}\)-stable, separable, non-nuclear, unital C\({^*}\)-algebra is equal to 3.  相似文献   

12.
We investigate Weyl type asymptotics of functional-difference operators associated to mirror curves of special del Pezzo Calabi-Yau threefolds. These operators are \({H(\zeta) = U + U^{-1} + V + \zeta V^{-1}}\) and \({H_{m,n} = U + V + q^{-mn}U^{-m}V^{-n}}\), where \({U}\) and \({V}\) are self-adjoint Weyl operators satisfying \({UV = q^{2}VU}\) with \({q = {\rm e}^{{\rm i}\pi b^{2}}}\), \({b > 0}\) and \({\zeta > 0}\), \({m, n \in \mathbb{N}}\). We prove that \({H(\zeta)}\) and \({H_{m,n}}\) are self-adjoint operators with purely discrete spectrum on \({L^{2}(\mathbb{R})}\). Using the coherent state transform we find the asymptotical behaviour for the Riesz mean \({\sum_{j\ge 1}(\lambda - \lambda_{j})_{+}}\) as \({\lambda \to \infty}\) and prove the Weyl law for the eigenvalue counting function \({N(\lambda)}\) for these operators, which imply that their inverses are of trace class.  相似文献   

13.
For \(A\subseteq {\mathbb {Q}}\), \(\alpha \in {\mathbb {Q}}\), let \(r_{A}(\alpha )=\#\{(a_{1}, a_{2})\in A^{2}: \alpha =a_{1}+a_{2}, a_{1}\le a_{2}\},\) \(\delta _{A}(\alpha )=\#\{(a_{1}, a_{2})\in A^{2}: \alpha =a_{1}-a_{2} \}.\) In this paper, we construct a set \(A\subset {\mathbb {Q}}\) such that \(r_{A}(\alpha )=1\) for all \(\alpha \in {\mathbb {Q}}\) and \(\delta _{A}(\alpha )=1\) for all \(\alpha \in {\mathbb {Q}}\setminus \{{0}\}\).  相似文献   

14.
In the top to random shuffle, the first \({a}\) cards are removed from a deck of \({n}\) cards \({12 \cdots n}\) and then inserted back into the deck. This action can be studied by treating the top to random shuffle as an element \({B_a}\), which we define formally in Section 2, of the algebra \({{\mathbb{Q}[S_n]}}\). For \({a = 1}\), Garsia in “On the powers of top to random shuffling” (2002) derived an expansion formula for \({{B^k_1}}\) for \({{k \leq n}}\), though his proof for the formula was non-bijective. We prove, bijectively, an expansion formula for the arbitrary finite product \({B_{a1} B_{a2} \cdots B_{ak}}\) where \({a_{1}, \cdots , a_{k}}\) are positive integers, from which an improved version of Garsia’s aforementioned formula follows. We show some applications of this formula for \({B_{a1} B_{a2} \cdots B_{ak}}\), which include enumeration and calculating probabilities. Then for an arbitrary group \({G}\) we define the group of \({G}\)-permutations \({{S^G_n} := {G \wr S_n}}\) and further generalize the aforementioned expansion formula to the algebra \({{\mathbb{Q} [ S^G_n ]}}\) for the case of finite \({G}\), and we show how other similar expansion formulae in \({{\mathbb{Q} [S_n]}}\) can be generalized to \({{\mathbb{Q} [S^G_n]}}\).  相似文献   

15.
Let \({\mathfrak{M}}\) be a Hilbert C*-module on a C*-algebra \({\mathfrak{A}}\) and let \({End_\mathfrak{A}(\mathfrak{M})}\) be the algebra of all operators on \({\mathfrak{M}}\). In this paper, first the continuity of \({\mathfrak{A}}\)-module homomorphism derivations on \({End_\mathfrak{A}(\mathfrak{M})}\) is investigated. We give some sufficient conditions on which every derivation on \({End_\mathfrak{A}(\mathfrak{M})}\) is inner. Next, we study approximately innerness of derivations on \({End_\mathfrak{A}(\mathfrak{M})}\) for a σ-unital C*-algebra \({\mathfrak{A}}\) and full Hilbert \({\mathfrak{A}}\)-module \({\mathfrak{M}}\). Finally, we show that every bounded linear mapping on \({End_\mathfrak{A}(\mathfrak{M})}\) which behave like a derivation when acting on pairs of elements with unit product, is a Jordan derivation.  相似文献   

16.
Let \({\mathcal{T}}\) be a triangular algebra over a commutative ring \({\mathcal{R}}\), \({\xi}\) be an automorphism of \({\mathcal{T}}\) and \({\mathcal{Z}_{\xi}(\mathcal{T})}\) be the \({\xi}\)-center of \({\mathcal{T}}\). Suppose that \({\mathfrak{q}\colon \mathcal{T}\times \mathcal{T}\longrightarrow \mathcal{T}}\) is an \({\mathcal{R}}\)-bilinear mapping and that \({\mathfrak{T}_{\mathfrak{q}}\colon \mathcal{T}\longrightarrow \mathcal{T}}\) is a trace of \({\mathfrak{q}}\). The aim of this article is to describe the form of \({\mathfrak{T}_{\mathfrak{q}}}\) satisfying the commuting condition \({[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi}=0}\) (resp. the centralizing condition \({[\mathfrak{T}_{\mathfrak{q}}(x), x]_{\xi}\in \mathcal{Z}_\xi(\mathcal{T})}\)) for all \({x\in \mathcal{T}}\). More precisely, we will consider the question of when \({\mathfrak{T}_{\mathfrak{q}}}\) satisfying the previous condition has the so-called proper form.  相似文献   

17.
We prove weighted \({L^p}\)-Liouville theorems for a class of second-order hypoelliptic partial differential operators \({\mathcal{L}}\) on Lie groups \({\mathbb{G}}\) whose underlying manifold is \({n}\)-dimensional space. We show that a natural weight is the right-invariant measure \(\check{H}\) of \({\mathbb{G}}\). We also prove Liouville-type theorems for \({C^{2}}\) subsolutions in \({L^{p}(\mathbb{G},\check{H})}\). We provide examples of operators to which our results apply, jointly with an application to the uniqueness for the Cauchy problem for the evolution operator \({\mathcal{L}-\partial_{t}}\).  相似文献   

18.
In this article, using the heat kernel approach from Bouche (Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp 67–81, de Gruyter, Berlin, 1996), we derive sup-norm bounds for cusp forms of integral and half-integral weight. Let \({\Gamma\subset \mathrm{PSL}_{2}(\mathbb{R})}\) be a cocompact Fuchsian subgroup of first kind. For \({k \in \frac{1}{2} \mathbb{Z}}\) (or \({k \in 2\mathbb{Z}}\)), let \({S^{k}_{\nu}(\Gamma)}\) denote the complex vector space of cusp forms of weight-k and nebentypus \({\nu^{2k}}\) (\({\nu^{k\slash 2}}\), if \({k \in 2\mathbb{Z}}\)) with respect to \({\Gamma}\), where \({\nu}\) is a unitary character. Let \({\lbrace f_{1},\ldots,f_{j_{k}} \rbrace}\) denote an orthonormal basis of \({S^{k}_{\nu}(\Gamma)}\). In this article, we show that as \({k \rightarrow \infty,}\) the sup-norm for \({\sum_{i=1}^{j_{k}}y^{k}|f_{i}(z)|^{2}}\) is bounded by O(k), where the implied constant is independent of \({\Gamma}\). Furthermore, using results from Berman (Math. Z. 248:325–344, 2004), we extend these results to the case when \({\Gamma}\) is cofinite.  相似文献   

19.
We obtain lower bounds on blow-up of solutions for the 3D magneto-micropolar equations. More precisely, we establish some estimates for the solution \((\mathbf{u},\mathbf{w},\mathbf{b}) (t)\) in its maximal interval \([0,T^{*})\) provided that \(T^{*}<\infty\), which show for \(\delta\in(0,1)\) that \(\|(\mathbf{u},\mathbf{w},\mathbf{b})(t)\|_{\dot{H}^{s}}\) is at least of the order \((T^{*}-t)^{-(\delta s)/(1+2\delta)}\) for \(s\geq1/2+\delta\). In particular, by choosing a suitable \(\delta\), one concludes that \(\|(\mathbf{u},\mathbf{w},\mathbf{b})(t)\|_{\dot{H}^{s}}\) is at least of the order \((T^{*}-t)^{-s/4}\), and \((T^{*}-t)^{1/4-s/2}\) for \(s\geq1\), and \(1/2< s<3/2\), respectively. We also show that \((T^{*}-t)^{-s/3}\) is a lower rate for \(\|(\mathbf{u},\mathbf{w},\mathbf{b})(t)\|_{\dot{H}^{s}}\) if \(s>3/2\).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号