首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We present an extended F-expansion method for finding periodic wave solutions of nonlinear evolution equations in mathematical physics, which can be thought of as a concentration of extended Jacobi elliptic function expansion method proposed more recently. By using the F-expansion, without calculating Jacobi elliptic functions, we obtain simultaneously many periodic wave solutions expressed by various Jacobi elliptic functions for the new Hamiltonian amplitude equation introduced by Wadati et al. When the modulus m approaches to 1 and 0, then the hyperbolic function solutions (including the solitary wave solutions) and trigonometric function solutions are also given respectively. As the parameter ε goes to zero, the new Hamiltonian amplitude equation becomes the well-known nonlinear Schrödinger equation (NLS), and at least there are 37 kinds of solutions of NLS can be derived from the solutions of the new Hamiltonian amplitude equation.  相似文献   

2.
The nonlinear Schrödinger (NLS) equation can be derived as an amplitude equation describing slow modulations in time and space of an underlying spatially and temporarily oscillating wave packet. The purpose of this paper is to prove estimates, between the formal approximation, obtained via the NLS equation, and true solutions of the original system in case of non-trivial quadratic resonances. It turns out that the approximation property (APP) holds if the approximation is stable in the system for the three-wave interaction (TWI) associated to the resonance. We construct a counterexample showing that the NLS equation can fail to approximate the original system if instability occurs for the approximation in the TWI system. In the unstable case we give some arguments why the validity of the APP can be expected for spatially localized solutions and why it cannot be expected for non-localized solutions. Although, we restrict ourselves to a nonlinear wave equation as original system we believe that the results hold in more general situations, too.  相似文献   

3.
In the present work, we study the generation of nonlinear modulated waves in a modified version of Noguchi electrical tr ansmission network. In the continuum limit, we have considered the semi discrete approximation and showed that wave modulations in the network are governed by a generalized Chen-Lee-Liu (G-CLL) equation whose “self steepening” parameter is free from line parameters. We have investigated the effects of the “self steepening” parameter of the equation on the dynamics of modulated waves propagating in the network and shown that it can be adequately used either to enhance or to soften the instability of the nonlinear Schrödinger (NLS) equation. Our investigations showed that the introduction of the “self steepening” term in the NLS equation of the network allows bright and dark solitonlike waves to coexist in the same modulational stable and unstable frequency regions of the NLS. Our analytical studies of the G-CLL equation of the network showed that the amplitude of the solitonlike waves propagating in the network decreases as the “self steepening” parameter of the G-CLL equation increases.  相似文献   

4.
In this paper, we study the traveling wave solutions for a complex short-pulse equation of both focusing and defocusing types, which governs the propagation of ultrashort pulses in nonlinear optical fibers. It can be viewed as an analog of the nonlinear Schrodinger (NLS) equation in the ultrashort-pulse regime. The corresponding traveling wave systems of the equivalent complex short-pulse equations are two singular planar dynamical systems with four singular straight lines. By using the method of dynamical systems, bifurcation diagrams and explicit exact parametric representations of the solutions are given, including solitary wave solution, periodic wave solution, peakon solution, periodic peakon solution and compacton solution under different parameter conditions.  相似文献   

5.
This paper is the first in a series papers devoted to the study of the rigorous derivation of the nonlinear Schrödinger (NLS) equation as well as other related systems starting from a model coming from the gravity‐capillary water wave system in the long‐wave limit. Our main goal is to understand resonances and their effects on having the nonlinear Schrödinger approximation or modification of it or having other models to describe the limit equation. In this first paper, our goal is not to derive NLS but to allow the presence of an arbitrary sequence of frequencies around which we have a modulation and prove local existence on a uniform time. This yields a new class of large data for which we have a large time of existence. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The propagation of wave envelopes in two‐dimensional (2‐D) simple periodic lattices is studied. A discrete approximation, known as the tight‐binding (TB) approximation, is employed to find the equations governing a class of nonlinear discrete envelopes in simple 2‐D periodic lattices. Instead of using Wannier function analysis, the orbital approximation of Bloch modes that has been widely used in the physical literature, is employed. With this approximation the Bloch envelope dynamics associated with both simple and degenerate bands are readily studied. The governing equations are found to be discrete nonlinear Schrödinger (NLS)‐type equations or coupled NLS‐type systems. The coefficients of the linear part of the equations are related to the linear dispersion relation. When the envelopes vary slowly, the continuous limit of the general discrete NLS equations are effective NLS equations in moving frames. These continuous NLS equations (from discrete to continuous) also agree with those derived via a direct multiscale expansion. Rectangular and triangular lattices are examples.  相似文献   

7.
Soliton perturbation theory is used to determine the evolution of a solitary wave described by a perturbed nonlinear Schrödinger equation. Perturbation terms, which model wide classes of physically relevant perturbations, are considered. An analytical solution is found for the first-order correction of the evolving solitary wave. This solution for the solitary wave tail is in integral form and an explicit expression is found, for large time. Singularity theory, usually used for combustion problems, is applied to the large time expression for the solitary wave tail. Analytical results are obtained, such as the parameter regions in which qualitatively different types of solitary wave tails occur, the location of zeros and the location and amplitude of peaks, in the solitary wave tail. Two examples, the near-continuum limit of a discrete NLS equation and an explicit numerical scheme for the NLS equation, are considered in detail. For the discrete NLS equation it is found that three qualitatively different types of solitary wave tail can occur, while for the explicit finite-difference scheme, only one type of solitary wave tail occurs. An excellent comparison between the perturbation solution and numerical simulations, for the solitary wave tail, is found for both examples.  相似文献   

8.
非线性弹性杆波动方程的摄动分析   总被引:5,自引:2,他引:3  
针对计入横向惯性效应后的非线性弹性杆纵向波动方程进行了分析.在小振幅、长波长的一般情况下,根据远方场简单波理论,采用约化摄动法,得到了NLS方程,并讨论了存在NLS孤子的条件.  相似文献   

9.
The nonlinear Schr?dinger(NLS for short) equation plays an important role in describing slow modulations in time and space of an underlying spatially and temporarily oscillating wave packet. In this paper, the authors study the NLS approximation by providing rigorous error estimates in Sobolev spaces for the electron Euler-Poisson equation,an important model to describe Langmuir waves in a plasma. They derive an approximate wave packet-like solution to the evolution equations by the multiscale a...  相似文献   

10.
Effect of Raman like perturbations on the propagation characteristics of an optical pulse in a fiber is simulated in different manner. The optical pulse is described by a modified NLS equation, which is coupled with a vibrational equation describing the Raman perturbation due to the molecular oscillation. Two different approaches are used to analyze the equation. In the first approach both the coupled equations are treated through projection operator technique to derive the ODE’s for describing the evolution of the pulse parameters. On the other hand in the later technique we could reduce the system to a new NLS equation which was then studied in a similar manner. The numerical results and the behaviour of the parameters predicted by both the methodologies reasonably tallies with each other. The detailed change of the amplitude, chirp, phase, and width of the pulse is analyzed. It is then shown how dispersion management partially restores the projected pulse. And lastly it is demonstrated that including a distance dependent amplification or an amplification map we can get back the required periodic structure required for a long haul transmission.  相似文献   

11.
We consider a nonlinear wave equation with a quasilinear quadratic nonlinearity. Slow spatial and temporal modulations of the envelope of an underlying carrier wave can be described formally by an NLS equation. It is the purpose of this paper to present a method which allows to prove error estimates between this formal approximation and true solutions of the quasilinear wave equation in case . The paper contains the first validity proof of the NLS approximation for a nonlinear wave equation with quasilinear quadratic terms.  相似文献   

12.
13.
By the method of dynamical system,we construct the exact travelling wave solutions of a new Hamiltonian amplitude equation and the Ostrovsky equation.Based on this method,the new exact travelling wave solutions of the new Hamiltonian amplitude equation and the Ostrovsky equation,such as solitary wave solutions,kink and anti-kink wave solutions and periodic travelling wave solutions,are obtained,respectively.  相似文献   

14.
在推广的β平面近似下,从包含耗散和外源的准地转位涡方程出发,利用Gardner-Morikawa变换和弱非线性摄动展开法,推导出带有外源和耗散强迫的非线性Boussinesq方程去刻画非线性Rossby波振幅的演变和发展.利用修正的Jacobi椭圆函数展开法,得到Boussinesq方程的周期波解和孤立波解,从解的结构分析了推广的β效应、切变基本流、外源和耗散是影响非线性Rossby波的重要因素.  相似文献   

15.
A model equation governing the primitive dynamics of wave packets near an extremum of the linear dispersion relation at finite wavenumber is derived. In two spatial dimensions, we include the effects of weak variation of the wave in the direction transverse to the direction of propagation. The resulting equation is contrasted with the Kadomtsev–Petviashvilli and Nonlinear Schrödinger (NLS) equations. The model is derived as an approximation to the equations for deep water gravity-capillary waves, but has wider applications. Both line solitary waves and solitary waves which decay in both the transverse and propagating directions—lump solitary waves—are computed. The stability of these waves is investigated and their dynamics are studied via numerical time evolution of the equation.  相似文献   

16.
Periodic wave trains are the generic one-dimensional solution form for reaction-diffusion equations with a limit cycle in the kinetics. Such systems are widely used as models for oscillatory phenomena in chemistry, ecology, and cell biology. In this paper, we study the way in which periodic wave solutions of such systems are modified by periodic forcing of kinetic parameters. Such forcing will occur in many ecological applications due to seasonal variations. We study temporal forcing in detail for systems of two reaction diffusion equations close to a supercritical Hopf bifurcation in the kinetics, with equal diffusion coefficients. In this case, the kinetics can be approximated by the Hopf normal form, giving reaction-diffusion equations of λ-ω type. Numerical simulations show that a temporal variation in the kinetic parameters causes the wave train amplitude to oscillate in time, whereas in the absence of any temporal forcing, this wave train amplitude is constant. Exploiting the mathematical simplicity of the λ-ω form, we derive analytically an approximation to the amplitude of the wave train oscillations with small forcing. We show that the amplitude of these oscillations depends crucially on the period of forcing.  相似文献   

17.
18.
We construct and quantify asymptotically in the limit of large mass a variety of edge-localized stationary states of the focusing nonlinear Schrödinger equation on a quantum graph. The method is applicable to general bounded and unbounded graphs. The solutions are constructed by matching a localized large amplitude elliptic function on a single edge with an exponentially smaller remainder on the rest of the graph. This is done by studying the intersections of Dirichlet-to-Neumann manifolds (nonlinear analogues of Dirichlet-to-Neumann maps) corresponding to the two parts of the graph. For the quantum graph with a given set of pendant, looping, and internal edges, we find the edge on which the state of smallest energy at fixed mass is localized. Numerical studies of several examples are used to illustrate the analytical results.  相似文献   

19.
We prove that slow modulations in time and space of periodic wave trains of the NLS equation can be approximated via solutions of Whitham’s equations associated with the wave train. The error estimates are based on a suitable choice of polar coordinates, a Cauchy–Kowalevskaya-like existence and uniqueness theorem, and energy estimates.  相似文献   

20.
Bethuel et al.  and  and Chiron and Rousset [3] gave very nice proofs of the fact that slow modulations in time and space of periodic wave trains of the NLS equation can approximately be described via solutions of the KdV equation associated with the wave train. Here we give a much shorter proof of a slightly weaker result avoiding the very detailed and fine analysis of ,  and . Our error estimates are based on a suitable choice of polar coordinates, a Cauchy–Kowalevskaya-like method, and energy estimates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号