首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
We establish an extension of Cantor’s intersection theorem for a \({K}\)-metric space (\({X, d}\)), where \({d}\) is a generalized metric taking values in a solid cone \({K}\) in a Banach space \({E}\). This generalizes a recent result of Alnafei, Radenovi? and Shahzad (2011) obtained for a \({K}\)-metric space over a solid strongly minihedral cone. Next we show that our Cantor’s theorem yields a special case of a generalization of Banach’s contraction principle given very recently by Cvetkovi? and Rako?evi? (2014): we assume that a mapping \({T}\) satisfies the condition “\({d(Tx, Ty) \preceq \Lambda (d(x, y))}\)” for \({x, y \in X}\), where \({\preceq}\) is a partial order induced by \({K}\), and \({\Lambda : E \rightarrow E}\) is a linear positive operator with the spectral radius less than one. We also obtain new characterizations of convergence in the sense of Huang and Zhang in a \({K}\)-metric space.  相似文献   

2.
We study Liouville-type theorems for degenerate parabolic equation of the form \({u_t-{\rm div}(|\nabla u|^{m-2}\nabla u) = u^p}\) where \({m > 2}\) and \({p > m - 1}\). We prove the optimal Liouville-type results in dimension \({N = 1}\), and for radial solutions in any dimension. We also provide some partial results for non-radial solutions in dimension \({N \geq 2}\). Our proofs are based on a generalized Gidas–Spruck technique, combined with the idea of Serrin and Zou (Acta Math 189(1):79–142, 2002) and of Bidaut-Véron (Équations aux dérivées partielles et applications. Elsevier, Paris, pp 189–198, 1998). Finally, we clarify and correct some of the previous results on this topic.  相似文献   

3.
Let \({\alpha}\) be a bounded linear operator in a Banach space \({\mathbb{X}}\), and let A be a closed operator in this space. Suppose that for \({\Phi_1, \Phi_2}\) mapping D(A) to another Banach space \({\mathbb{Y}}\), \({A_{|{\rm ker}\, \Phi_1}}\) and \({A_{|{\rm ker}\, \Phi_2}}\) are generators of strongly continuous semigroups in \({\mathbb{X}}\). Assume finally that \({A_{|{\rm ker}\, \Phi_\text{a}}}\), where \({\Phi_\text{a} = \Phi_1 \alpha + \Phi_2 \beta}\) and \({\beta = I_\mathbb{X} - \alpha}\), is a generator also. In the case where \({\mathbb{X}}\) is an L 1-type space, and \({\alpha}\) is an operator of multiplication by a function \({0 \le \alpha \le 1}\), it is tempting to think of the later semigroup as describing dynamics which, while at state x, is subject to the rules of \({A_{|{\rm ker}\, \Phi_1}}\) with probability \({\alpha (x)}\) and is subject to the rules of \({A_{|{\rm ker}\, \Phi_2}}\) with probability \({\beta (x)= 1 - \alpha (x)}\). We provide an approximation (a singular perturbation) of the semigroup generated by \({A_{|{\rm ker}\, \Phi_\text{a}}}\) by semigroups built from those generated by \({A_{|{\rm ker}\, \Phi_1}}\) and \({A_{|{\rm ker}\, \Phi_2}}\) that supports this intuition. This result is motivated by a model of dynamics of Solea solea (Arino et al. in SIAM J Appl Math 60(2):408–436, 1999–2000; Banasiak and Goswami in Discrete Continuous Dyn Syst Ser A 35(2):617–635, 2015; Banasiak et al. in J Evol Equ 11:121–154, 2011, Mediterr J Math 11(2):533–559, 2014; Banasiak and Lachowicz in Methods of small parameter in mathematical biology, Birkhäuser, 2014; Sanchez et al. in J Math Anal Appl 323:680–699, 2006) and is, in a sense, dual to those of Bobrowski (J Evol Equ 7(3):555–565, 2007), Bobrowski and Bogucki (Stud Math 189:287–300, 2008), where semigroups generated by convex combinations of Feller’s generators were studied.  相似文献   

4.
We show that if \({f\colon X\to Y}\) is a quasisymmetric mapping between Ahlfors regular spaces, then \({dim_H f(E)\leq dim_H E}\) for “almost every” bounded Ahlfors regular set \({E\subseteq X}\). If additionally, \({X}\) and \({Y}\) are Loewner spaces then \({dim_H f(E)=dim_H E}\) for “almost every" Ahlfors regular set \({E\subset X}\). The precise statements of these results are given in terms of Fuglede’s modulus of measures. As a corollary of these general theorems we show that if \({f}\) is a quasiconformal map of \({\mathbb{R}^N}\), \({N\geq 2}\), then for Lebesgue a.e. \({y\in\mathbb{R}^N}\) we have \({dim_H f(y+E) = dim_H E}\). A similar result holds for Carnot groups as well. For planar quasiconformal maps, our general estimates imply that if \({E \subset {\mathbb{R}}}\) is Ahlfors \({d}\)-regular, \({d < 1}\), then some component of \({f(E \times {\mathbb{R}})}\) has dimension at most \({2/(d+1)}\), and we construct examples to show this bound is sharp. In addition, we show there is a \({1}\)-dimensional set \({S\subseteq \mathbb R}\) and planar quasiconformal map \({f}\) such that \({f({\mathbb{R}} \times S)}\) contains no rectifiable sub-arcs. These results generalize work of Balogh et al. (J Math Pures Appl (2)99:125–149, 2013) and answer questions posed in Balogh et al. (J Math Pures Appl (2)99:125–149, 2013) and Capogna et al. (Mapping theory in metric spaces. http://aimpl.org/mappingmetric, 2016).  相似文献   

5.
Let \({\Sigma_r}\) be the symmetric group acting on \({r}\) letters, \({K}\) be a field of characteristic 2, and \({\lambda}\) and \({\mu}\) be partitions of \({r}\) in at most two parts. Denote the permutation module corresponding to the Young subgroup \({\Sigma_\lambda}\), in \({\Sigma_r}\), by \({M^\lambda}\), and the indecomposable Young module by \({Y^\mu}\). We give an explicit presentation of the endomorphism algebra \({{\rm End}_{k[\Sigma_r]}(Y^\mu)}\) using the idempotents found by Doty et al. (J Algebra 307(1):377–396, 2007).  相似文献   

6.
In this short note we study a nonexistence result of biharmonic maps from a complete Riemannian manifold into a Riemannian manifold with nonpositive sectional curvature. Assume that \({\phi : (M, g) \to (N, h)}\) is a biharmonic map, where (M, g) is a complete Riemannian manifold and (N, h) a Riemannian manifold with nonpositive sectional curvature, we will prove that \({\phi}\) is a harmonic map if one of the following conditions holds: (i) \({|d\phi|}\) is bounded in Lq(M) and \({\int_{M}|\tau(\phi)|^{p}dv_{g} < \infty}\), for some \({1 \leq q \leq \infty}\), \({1 < p < \infty}\); or (ii) \({Vol(M) = \infty}\) and \({\int_{M}|\tau(\phi)|^{p}dv_{g} < \infty}\), for some \({1 < p < \infty}\). In addition, if N has strictly negative sectional curvature, we assume that \({rank\phi(q) \geq 2}\) for some \({q \in M}\) and \({\int_{M}|\tau(\phi)|^{p}dv_{g} < \infty}\), for some \({1 < p < \infty}\). These results improve the related theorems due to Baird et al. (cf. Ann Golb Anal Geom 34:403–414, 2008), Nakauchi et al. (cf. Geom. Dedicata 164:263–272, 2014), Maeta (cf. Ann Glob Anal Geom 46:75–85, 2014), and Luo (cf. J Geom Anal 25:2436–2449, 2015).  相似文献   

7.
This paper deals with the existence of time-periodic solutions to the compressible Navier–Stokes equations effected by general form external force in \({\mathbb{R}^{N}}\) with \({N = 4}\). Using a fixed point method, we establish the existence and uniqueness of time-periodic solutions. This paper extends Ma, UKai, Yang’s result [5], in which, the existence is obtained when the space dimension \({N \ge 5}\).  相似文献   

8.
What is the maximum of the sum of the pairwise (non-obtuse) angles formed by n lines in the Euclidean 3-space? This question was posed by Fejes Tóth in (Acta Math Acad Sci Hung 10:13–19, 1959). Fejes Tóth solved the problem for \({n \leq 6}\), and proved the asymptotic upper bound \({n^{2} \pi /5}\) as \({n \to \infty}\). He conjectured that the maximum is asymptotically equal to \({n^{2} \pi /6}\) as \({n \to \infty}\). The main result of this paper is an upper bound on the sum of the angles of n lines in the Euclidean 3-space that is asymptotically equal to \({3n^{2} \pi /16}\) as \({n \to \infty}\).  相似文献   

9.
In this article, using the heat kernel approach from Bouche (Asymptotic results for Hermitian line bundles over complex manifolds: The heat kernel approach, Higher-dimensional complex varieties, pp 67–81, de Gruyter, Berlin, 1996), we derive sup-norm bounds for cusp forms of integral and half-integral weight. Let \({\Gamma\subset \mathrm{PSL}_{2}(\mathbb{R})}\) be a cocompact Fuchsian subgroup of first kind. For \({k \in \frac{1}{2} \mathbb{Z}}\) (or \({k \in 2\mathbb{Z}}\)), let \({S^{k}_{\nu}(\Gamma)}\) denote the complex vector space of cusp forms of weight-k and nebentypus \({\nu^{2k}}\) (\({\nu^{k\slash 2}}\), if \({k \in 2\mathbb{Z}}\)) with respect to \({\Gamma}\), where \({\nu}\) is a unitary character. Let \({\lbrace f_{1},\ldots,f_{j_{k}} \rbrace}\) denote an orthonormal basis of \({S^{k}_{\nu}(\Gamma)}\). In this article, we show that as \({k \rightarrow \infty,}\) the sup-norm for \({\sum_{i=1}^{j_{k}}y^{k}|f_{i}(z)|^{2}}\) is bounded by O(k), where the implied constant is independent of \({\Gamma}\). Furthermore, using results from Berman (Math. Z. 248:325–344, 2004), we extend these results to the case when \({\Gamma}\) is cofinite.  相似文献   

10.
Theorems due to Stenger (Bull Am Math Soc 74:369–372, 1968) and Nudelman (Int Equ Oper Theory 70:301–305, 2011) in Hilbert spaces and their generalizations to Krein spaces in Azizov and Dijksma (Int Equ Oper Theory 74(2):259–269, 2012) and Azizov et al. (Linear Algebra Appl 439:771–792, 2013) generate additional questions about properties a finite-codimensional compression \({T_0}\) of a symmetric or self-adjoint linear relation \({T}\) may or may not inherit from \({T}\). These questions concern existence of invariant maximal nonnegative subspaces, definitizability, singular critical points and defect indices.  相似文献   

11.
We establish the classification of minimal mass blow-up solutions of the \({L^{2}}\) critical inhomogeneous nonlinear Schrödinger equation
$$i\partial_t u + \Delta u + |x|^{-b}|u|^{\frac{4-2b}{N}}u = 0,$$
thereby extending the celebrated result of Merle (Duke Math J 69(2):427–454, 1993) from the classic case \({b=0}\) to the case \({0< b< {\rm min} \{2,N\} }\), in any dimension \({N \geqslant 1}\).
  相似文献   

12.
Let \({D}\) be a division ring with center \({F}\). The aim of the paper is to show that if \({F}\) is uncountable or \({D}\) is finite dimensional over \({F}\), then every subnormal subgroup of the multiplicative group \({D^*}\) of \({D}\) satisfying a nontrivial generalized power central group identity is contained in \({F}\). As a corollary, Conjecture 2 in (Herstein, Israel J Math 31:180–188, 1978) holds in case \({D}\) is finite dimensional.  相似文献   

13.
A sequence A of nonnegative integers is called complete if all sufficiently large integers can be represented as the sum of distinct terms taken form A. For a sequence \({S=\{s_{1}, s_{2}, \dots\}}\) of positive integers and a positive real number α, let S α denote the sequence \({\{\lfloor\alpha s_{1}\rfloor, \lfloor\alpha s_{2}\rfloor, \dots\}}\), where \({\lfloor x \rfloor}\) denotes the greatest integer not greater than x. Let \({{U_S = \{\alpha \mid S_\alpha} \, is complete\}}\). Hegyvári [6] proved that if \({\lim_{n\to\infty} (s_{n+1}-s_{n})=+ \infty}\), \({s_{n+1} < \gamma s_{n}}\) for all integers \({n \geqq n_{0}}\), where \({1 < \gamma < 2}\), and \({U_{S}\ne\emptyset}\), then \({\mu(U_{S}) > 0}\), where \({\mu(U_{S})}\) is the Lebesgue measure of U S . Yong-Gao Chen and the first author [4] proved that, if \({s_{n+1} < \gamma s_{n}}\) for all integers \({n \geqq n_{0}}\), where \({1 < \gamma \leqq 7/4=1.75}\), then \({\mu(U_{S}) > 0}\). In this paper, we prove that the conclusion holds for \({1 < \gamma \leqq \sqrt[4]{13}=1.898\dots\;}\).  相似文献   

14.
In this paper, we deal with Bernstein-type operators defined by Cárdenas-Morales et al. as \({B_{n}(f \circ \tau^{-1}) \circ \tau}\), where \({B_{n}}\) is the nth Bernstein polynomial (Comput Math Appl 62(1):158–163, 2011). Assuming that \({\tau}\) and f are absolutely continuous functions on \({[0, 1]}\) and inf \({\tau ^{\prime} (x) \geq m > 0}\) as well as \({\tau (0) = 0}\) and \({\tau (1) = 1,}\) we study the convergence of Bernstein-type operators to f in variation seminorm. Moreover, we give a Voronovskaja-type formula and a Jackson-type estimate in the sense of Bardaro et al. (Analysis 23:299–340, 2003).  相似文献   

15.
In this paper, we continue the study of semitotal domination in graphs in [Discrete Math. 324, 13–18 (2014)]. A set \({S}\) of vertices in \({G}\) is a semitotal dominating set of \({G}\) if it is a dominating set of \({G}\) and every vertex in \({S}\) is within distance 2 of another vertex of \({S}\). The semitotal domination number, \({{\gamma_{t2}}(G)}\), is the minimum cardinality of a semitotal dominating set of \({G}\). This domination parameter is squeezed between arguably the two most important domination parameters; namely, the domination number, \({\gamma (G)}\), and the total domination number, \({{\gamma_{t}}(G)}\). We observe that \({\gamma (G) \leq {\gamma_{t2}}(G) \leq {\gamma_{t}}(G)}\). A claw-free graph is a graph that does not contain \({K_{1, \, 3}}\) as an induced subgraph. We prove that if \({G}\) is a connected, claw-free, cubic graph of order \({n \geq 10}\), then \({{\gamma_{t2}}(G) \leq 4n/11}\).  相似文献   

16.
Let \({\varphi}\) be a Musielak–Orlicz function satisfying that, for any \({(x,\,t)\in{\mathbb R}^n \times [0, \infty)}\), \({\varphi(\cdot,\,t)}\) belongs to the Muckenhoupt weight class \({A_\infty({\mathbb R}^n)}\) with the critical weight exponent \({q(\varphi) \in [1,\,\infty)}\) and \({\varphi(x,\,\cdot)}\) is an Orlicz function with uniformly lower type \({p^{-}_{\varphi}}\) and uniformly upper type \({p^+_\varphi}\) satisfying \({q(\varphi) < p^{-}_{\varphi}\le p^{+}_{\varphi} < \infty}\). In this paper, the author obtains a sharp weighted bound involving \({A_\infty}\) constant for the Hardy–Littlewood maximal operator on the Musielak–Orlicz space \({L^{\varphi}}\). This result recovers the known sharp weighted estimate established by Hytönen et al. in [J. Funct. Anal. 263:3883–3899, 2012].  相似文献   

17.
In the top to random shuffle, the first \({a}\) cards are removed from a deck of \({n}\) cards \({12 \cdots n}\) and then inserted back into the deck. This action can be studied by treating the top to random shuffle as an element \({B_a}\), which we define formally in Section 2, of the algebra \({{\mathbb{Q}[S_n]}}\). For \({a = 1}\), Garsia in “On the powers of top to random shuffling” (2002) derived an expansion formula for \({{B^k_1}}\) for \({{k \leq n}}\), though his proof for the formula was non-bijective. We prove, bijectively, an expansion formula for the arbitrary finite product \({B_{a1} B_{a2} \cdots B_{ak}}\) where \({a_{1}, \cdots , a_{k}}\) are positive integers, from which an improved version of Garsia’s aforementioned formula follows. We show some applications of this formula for \({B_{a1} B_{a2} \cdots B_{ak}}\), which include enumeration and calculating probabilities. Then for an arbitrary group \({G}\) we define the group of \({G}\)-permutations \({{S^G_n} := {G \wr S_n}}\) and further generalize the aforementioned expansion formula to the algebra \({{\mathbb{Q} [ S^G_n ]}}\) for the case of finite \({G}\), and we show how other similar expansion formulae in \({{\mathbb{Q} [S_n]}}\) can be generalized to \({{\mathbb{Q} [S^G_n]}}\).  相似文献   

18.
We consider the conditions under which a continuous function \({\varphi \colon {\mathbb{R}}^n \to \mathbb {R}}\) is the imaginary part \({\Im f}\) of the characteristic function f of a probability measure on \({{\mathbb{R}}^n}\). A similar problem about such an \({\varphi}\) that it is the argument of the characteristic function was solved by Ilinskii [Theory Probab. Appl. 20 (1975), 410–415]. In this paper, a characterization of what \({\varphi}\) might serve as the imaginary part of the characteristic function f is given. As a consequence, we provide an answer to the following question posed by N. G. Ushakov [7]: Is it true that f is never determined by its imaginary part \({\Im f}\) ? In other words, is it true that for any characteristic function f there exists a characteristic function g such that \({\Im f\equiv \Im g}\) but \({ f\not\equiv g}\) ? We prove that the answer to this question is negative. In addition, several examples of characteristic functions which are uniquely determined by their imaginary parts are given.  相似文献   

19.
The Ramanujan sequence \(\{\theta _{n}\}_{n \ge 0}\), defined as \(\theta _{0}= {1}/{2}\), \({n^{n}} \theta _{n}/{n !} = {e^{n}}/{2} - \sum _{k=0}^{n-1} {n^{k}}/{k !}\, \), \(n \ge 1\), has been studied on many occasions and in many different contexts. Adell and Jodrá (Ramanujan J 16:1–5, 2008) and Koumandos (Ramanujan J 30:447–459, 2013) showed, respectively, that the sequences \(\{\theta _{n}\}_{n \ge 0}\) and \(\{4/135 - n \cdot (\theta _{n}- 1/3 )\}_{n \ge 0}\) are completely monotone. In the present paper, we establish that the sequence \(\{(n+1) (\theta _{n}- 1/3 )\}_{n \ge 0}\) is also completely monotone. Furthermore, we prove that the analytic function \((\theta _{1}- 1/3 )^{-1}\sum _{n=1}^{\infty } (\theta _{n}- 1/3 ) z^{n} / n^{\alpha }\) is universally starlike for every \(\alpha \ge 1\) in the slit domain \(\mathbb {C}\setminus [1,\infty )\). This seems to be the first result putting the Ramanujan sequence into the context of analytic univalent functions and is a step towards a previous stronger conjecture, proposed by Ruscheweyh et al. (Israel J Math 171:285–304, 2009), namely that the function \((\theta _{1}- 1/3 )^{-1}\sum _{n=1}^{\infty } (\theta _{n}- 1/3 ) z^{n} \) is universally convex.  相似文献   

20.
Recently, Jleli and Samet [J. Inequal. Appl. (2014), 2014:38] introduced and studied a new contraction to prove a generalization of the Banach contraction principle. In this paper, we introduce the concept of \({\alpha}\)-\({H\Theta}\)-contraction with respect to a general family of functions H and we establish Jleli–Samet-type fixed point results in metric and ordered metric spaces. As an application of our results we deduce Suzuki-type fixed point results for \({H\Theta}\)-contractions. We also derive certain fixed and periodic point results for orbitally continuous generalized \({\Theta}\)-contractions. Moreover, we present an illustrative example to highlight the obtained improvements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号