首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper deals with three-dimensional nonlinear finite element analysis of concrete structures. A new three-parameter failure criterion, formulated in terms of three stress invariants, is suggested for plain concrete. The criterion can accurately describe available experimental data throughout the stress range from tensile stresses to high compressive stresses. The constitutive matrix of a cracked concrete element is deduced by coupling the normal and tangential effects of crack bands. The modeling of reinforcement and its interaction with concrete are also discussed. Numerical examples of plain and reinforced concrete are presented. The computational results compare satisfactorily with experimental data.This research is supported by the Chinese National Committee of Science and Technology and the Chinese National Bureau of Nuclear Safety.  相似文献   

2.
A new methodology for the geometrically nonlinear analysis of orthotropic membrane structures using triangular finite elements is presented. The approach is based on writing the constitutive equations in the principal fiber orientation of the material. A direct consequence of the fiber orientation strategy is the possibility to analyze initially out-of-plane prestressed membrane structures. An algorithm to model wrinkling behavior is also described. Examples of application to a number of membrane structures are presented.  相似文献   

3.
4.
5.
Peridynamics via finite element analysis   总被引:2,自引:0,他引:2  
Peridynamics is a recently developed theory of solid mechanics that replaces the partial differential equations of the classical continuum theory with integral equations. Since the integral equations remain valid in the presence of discontinuities such as cracks, the method has the potential to model fracture and damage with great generality and without the complications of mathematical singularities that plague conventional continuum approaches. Although a discretized form of the peridynamic integral equations has been implemented in a meshless code called EMU, the objective of the present paper is to describe how the peridynamic model can also be implemented in a conventional finite element analysis (FEA) code using truss elements. Since FEA is arguably the most widely used tool for structural analysis, this implementation may hasten the verification of peridynamics and significantly broaden the range of problems that the practicing analyst might attempt. Also, the present work demonstrates that different subregions of a model can be solved with either the classical partial differential equations or the peridynamic equations in the same calculation thus combining the efficiency of FEA with the generality of peridynamics. Several example problems show the equivalency of the FEA and the meshless peridynamic approach as well as demonstrate the utility and robustness of the method for problems involving fracture, damage and penetration.  相似文献   

6.
An inference-dynamic model is developed based on a model dynamic analysis using a moving boundary condition. The uncertainty of the physical parameters is implemented in the model using an inference scheme coupled with a perturbation technique. Finally, the first two statistical moments of the displacements and the stress field are estimated according to the proposed analytical scheme and are in good agreement with the initially assumed fields.  相似文献   

7.
The response of concrete slab on Concrete-Faced Rockfill (CFR) dams is very important. This study investigates the reliability of the concrete slab on a CFR dam by the improved Rackwitz–Fiessler method under static loads. For this purpose, ANSYS finite element analysis software and FERUM reliability analysis program are combined with direct coupled method and response surface method. Reliability index and probability of failure of the concrete are computed in the all critical points of the concrete slab by dam height. This study is also expanded for the reliability of CFR dams including different concrete slab thickness. In addition to the linear behavior, geometrically and materially non-linear responses of the dam are considered in the finite element analysis which is performed with reliability analysis. The Drucker–Prager method and the multi linear kinematic hardening method are, respectively, used for concrete slab and for rockfill and foundation rock. Finite element model used in the analyses includes dam–reservoir–foundation interaction. Reservoir water is modeled by the Lagrangian approach. Welded and friction contact based on the Coulomb’s friction law are considered in the joints of the dam. One-dimensional two noded contact elements are used to define friction. The self-weight of the dam and the hydrostatic pressure of the reservoir water are considered in the numerical solutions. According to this study, hydrostatic pressure, nonlinear response of the rockfill and the decrease in the concrete slab thickness reduce the reliability of the concrete slab of the CFR dam. Besides, the CFR dam models including friction are safer than the models including welded contact in the joints.  相似文献   

8.
The application of the Lanczos algorithm in Newton-like methods for solving non-linear systems of equations arising in nonlinear structural finite element analysis is presented. It is shown that with appropriate preconditioners iterative methods can be developed which are robust and efficient even for ill conditioned problems. Though the real advantage of iterative solvers seems to exist on distributed memory machines, even on serial machines the performance can be improved compared with direct solvers while saving memory capacity. With a specific modification of the Lanczos algorithm in combination with arc-length procedures a further speed-up of the nonlinear analysis can be achieved. For parallel implementations domain decomposition methods are used. A parallel preconditioning strategy based on an incomplete factorisation method is presented. An example is taken and the quality and efficiency of two different domain decomposition methods are discussed for a large shell structure. This work was supported by the BMBF (Bundesministerium für Bildung und Forschung) of Germany.  相似文献   

9.
In this paper, a nonlinear static finite element analysis of simply supported smart functionally graded (FG) plates in the presence/absence of the thermal environment has been presented. The substrate FG plate is integrated with the patches of piezoelectric fiber reinforced composite (PFRC) material which act as the distributed actuators of the plate. The material properties of the FG substrate plate are assumed to be temperature dependent and graded along the thickness direction according to a simple power-law distribution in terms of the volume fractions of the constituents. The derivation of this nonlinear thermo-electro-mechanical coupled finite element model is based on the first order shear deformation theory and the Von Karman type geometric nonlinearity. The numerical solutions of the nonlinear equations of the finite element model are obtained by employing the direct iteration method. The numerical illustrations suggest the potential use of the distributed actuator made of the PFRC material for active control of nonlinear deformations of smart FG structures. The effects of volume fraction index of the FG material of the substrate plates and the locations of the PFRC patches on the control authority of the patches are investigated. Emphasis has also been placed on investigating the effect of variation of piezoelectric fiber orientation angle in the PFRC patches on their actuation capability for counteracting the large deflections of FG plates.  相似文献   

10.
A finite element model is developed to study the large-amplitude free vibrations of generally-layered laminated composite beams. The Poisson effect, which is often neglected, is included in the laminated beam constitutive equation. The large deformation is accounted for by using von Karman strains and the transverse shear deformation is incorporated using a higher order theory. The beam element has eight degrees of freedom with the inplane displacement, transverse displacement, bending slope and bending rotation as the variables at each node. The direct iteration method is used to solve the nonlinear equations which are evaluated at the point of reversal of motion. The influence of boundary conditions, beam geometries, Poisson effect, and ply orientations on the nonlinear frequencies and mode shapes are demonstrated.  相似文献   

11.
In this paper, a finite element formulation is defined in the framework of the discontinuous Galerkin method. Discontinuous Galerkin (dG) methods are classically used in fluid mechanics, however recently their application in solid mechanics has become more vivid among scientists. Of special interest is their application in elliptic problems with constraints such as incompressibility which leads to volumetric locking phenomenon and also in some structural models of shells, plates and beams with compatibility constraints, which brings about shear locking [1]. While classical standard Galerkin methods must be continuous, dG methods can be applied for discontinuities across element boundaries, where a jump of a value (displacement) can be observed. In the present work, a dG method is applied to a linear elastic bar, where a weak discontinuity is allowed in the bar. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
Dual extremum principles are established in this paper for the variational boundary-value problem of elasto-perfect plasticity with large deformation. There exists a duality gap between the primal and dual variational problems. Our application to nonlinear limit analysis yields a pair of dual bounding theorems for the safety factor, when the gap has the right sign. It is proved that both the upper and lower bounds directly depend on the properties of the dual gap function.This research was supported by Army Research Office grant DAAL 03-86-K 0171 and National Science Foundation grant DMS-87-03313.  相似文献   

13.
In Part I of this two-part work, the relative errors in representing and processing real numbers in digital computers are reviewed, and the computation of the digits lost from the relative errors is shown. The upper bound estimate of the relative error in the solution of Kξ = p for the displacements ξ is given as a function of the condition number of the stiffness matrix K, and the relative errors in K and the load vector p. The computation of relative errors for p and K by equilibrium checks is outlined, and various estimates for the condition number of the stiffness matrix are given.  相似文献   

14.
In this paper, a coupled two-scale shell model is presented. A variational formulation and associated linearisation for the coupled global-local boundary value problem is derived. The discretisation of the shell is performed with quadrilaterals, whereas the local boundary value problems at the integration points of the shell are discretised using 8-noded or 27-noded brick elements, or solid shell elements. The coupled boundary value problem is simultaneously solved within a Newton iteration scheme. Solutions for small strain problems are computed within the so-called FE2 method. In an important test, the correct material matrix for the stress resultants assuming linear elasticity and a homogeneous continuum is verified. Examples show that the developed two-scale model is able to analyse the global and local mechanical behaviour of heterogeneous shell structures. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

15.
Limit analysis decomposition and finite element mixed method   总被引:1,自引:0,他引:1  
This paper proposes an original decomposition approach to the upper bound method of limit analysis. It is based on a mixed finite element approach and on a convex interior point solver, using linear or quadratic discontinuous velocity fields. Presented in plane strain, this method appears to be rapidly convergent, as verified in the Tresca compressed bar problem in the linear velocity case. Then, using discontinuous quadratic velocity fields, the method is applied to the celebrated problem of the stability factor of a Tresca vertical slope: the upper bound is lowered to 3.7776-value to be compared to the best published lower bound 3.7752-by succeeding in solving a nonlinear optimization problem with millions of variables and constraints.  相似文献   

16.
An extended crystal plasticity model is applied to crystalline sub-micron gold in order to study the mechanical response. Numerical results for different crystal sizes are presented and discussed. The governing equations are discretized and, subsequently, solved via a dual-mixed finite element formulation [1, 2]. The evolution equation of the dislocation density is taken as a global field relation additionally to the balance of linear momentum, whereas the flow rule is solved locally at the Gauß point level [3,4]. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
We generalize the well‐known residual‐based error estimator in linear elasticity to the case of non‐linear deformation problems based on large strain and demonstrate its use in adaptive mesh control. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

18.
Four different automatic mesh generators capable of generating either triangular meshes or hybrid meshes of mixed element types have been used in the mesh generation process. The performance of these mesh generators were tested by applying them to the adaptive finite element refinement procedure. It is found that by carefully controlling the quality and grading of the quadrilateral elements, an increase in efficiency over pure triangular meshes can be achieved. Furthermore, if linear elements are employed, an optimal hybrid mesh can be obtained most economically by a combined use of the mesh coring technique suggested by Lo and Lau and a selective removal of diagonals from the triangular element mesh. On the other hand, if quadratic elements are used, it is preferable to generate a pure triangular mesh first, and then obtain a hybrid mesh by merging of triangles.  相似文献   

19.
Following widespread damage to bridge joints in the San Francisco region from the 1989 Loma Prieta earthquake, the necessity for establishing an alternative method for seismic design of bridge joints was identified. Recognizing that conventional joint design practice based directly on shear forces results in congested reinforcement details, which are difficult to implement in practice, a rational design procedure was sought through large-scale testing of bridge joint systems and subsequent finite element and strut-and-tie analyses. The finite element part of the study is presented in this paper, which focuses on (a) identification of compression force flow and thus the load path across the joint, (b) examination of an efficient joint force transfer model, and (c) influence of cap beam prestressing. Combining the experimental and analytical results, a joint design method has been established in which reduction of joint reinforcement was achieved by treating joint shear as part of the complete force transfer across the joint, rather than as an independent action. The proposed design approach has been validated in a laboratory test on a full-scale multiple-column bridge bent.  相似文献   

20.
Formulated in terms of velocity, pressure and the extra stress tensor, the incompressible Navier-Stokes is discretized by stabilized finite element method. The stabilized method proposed is analyzed for the full nonlinear model, and is applicable to various combinations of interpolation functions, including the simplest equal-order linear and bilinear elements.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号