首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Micellar electrokinetic capillary chromatography (MEKC) was performed at 25 °C and 30 kV (under a pressure of 15 mbar), using 30 mM borate buffer containing 60 mM sodium dodecysulfate (SDS) and 5% (v/v) methanol as background electrolyte (pH 9.0) to determine doxycycline. UV detection was at 350 nm. The method was shown to be specific, accurate (recovery was 100.3 ± 1.0%), linear over the tested range (correlation coefficient 0.9995) and precise (RSD <1.9%). The method was used to determine doxycycline in tablets, capsules and human urine after oral application.  相似文献   

2.
A capillary electrophoresis (CE) method is described for the simultaneous determination of copper and iron after complexation with a readily biodegradable chelating agent, [S,S']-ethylenediaminedisuccinic acid (EDDS), in wood pulp. CE separation was performed in a fused-silica capillary (50 microm i.d.; total length, 65 cm) with an electrolyte containing 25 mM borate buffer and 0.5 mM CTAB at pH 7.0 and an applied voltage of -25 kV. The samples were introduced by applying a 50 mbar pressure for 2 s, and detection of the complexes was monitored at 245 nm. The methodology performance of the methods was evaluated in terms of the linearity, limit of detection (LOD), limit of quantitation (LOQ) and reproducibility. The applicability of the method was demonstrated for the analysis of copper and iron in wood pulp.  相似文献   

3.
Electrokinetic supercharging, a convenient and powerful online preconcentration technique in capillary electrophoresis, was introduced and evaluated for the determination of two alkaloids, berberine and jatrorrhizine, in mice fecal samples for the first time. The method depended on using a bare fused silica capillary (50 cm × 50 μm i.d.) and applying the voltage of 25 kV with UV detection at 205 nm. Parameters that affect the separation and preconcentration efficiency have been optimized. The optimum conditions used were as follows: background electrolyte consisting of 40mM sodium dihydrogenphosphate containing 30% methanol (v/v); hydrodynamic injection of 20mM KCl (50 mbar × 150 s) as the leading electrolyte; electrokinetic injection of the sample (+15 kV, 120 s) followed by the hydrodynamic injection of 30mM dodecyl trimethyl ammonium chloride (50 mbar × 12 s) as the terminating electrolyte. The results showed that the detection sensitivity of berberine and jatrorrhizine was, respectively, improved up 2740- and 2928-fold compared with normal injection, providing limits of detection lower than 3 ng/mL with good repeatability in areas (relative standard deviation < 3%). In summary, the developed method proved its ability in analyzing trace alkaloids in complicated biological samples.  相似文献   

4.
Summary A capillary electrophoretic method for the determination of Cu(II) and Co(III) chelates with ethylenediamine in electroless copper plating baths has been developed. The influence of carrier electrolyte parameters such as nature of counter-ion and pH were studied and discussed. The optimised separations were carried out in a fused silica capillary (57 cm × 75 μm I.D.) filled with an ethylenediamine sulfate electrolyte (20 mol L−1 ethylendiamine, pH7.0 with H2SO4; applied voltage, +25 kV) using direct UV detection at 214 nm. The detection limits for a signalto-noise ratio of 3 and 10s hydrodynamic injection were 5×10−6 mol L−1 for Cu(II) and 1×10−6 mol L−1 for Co(III). The relative standard deviations of the peak areas for Cu(II) and Co(III) were found to be 1.5% and 2.4%, respectively, with five consecutive injections of standard solution containing 5×10−5 mol L−1 of each metal ion. Application of the method to the speciation of Cu(II) and Co(III) complexes in copper plating bath samples is also demonstrated.  相似文献   

5.
Novel capillary electrophoresis methods using CDs as chiral selectors were developed and validated for the chiral separation of lansoprazole and rabeprazole, two proton pump inhibitors. Fourteen different neutral and anionic CDs were screened at pH 4 and 7 in the preliminary analysis. Sulfobutyl‐ether‐β‐CD with a degree of substitution of 6.5 and 10 at neutral pH proved to be the most suitable chiral selector for both compounds. Various dual CD systems were also compared, and the possible mechanisms of enantiomer separation were investigated. A dual selector system containing sulfobutyl‐ether‐β‐CD degree of substitution 6.5 and native γ‐CD proved to be the most adequate system for the separations. Method optimization was carried out using an experimental design approach, performing an initial fractional factorial screening design, followed by a central composite design to establish the optimal analytical conditions. The optimized methods (25 mM phosphate buffer, pH 7, 10 mM sulfobutyl‐ether‐β‐CD/20 mM γ‐CD, +20 kV voltage; 17°C temperature; 50 mbar/3 s injection, detection at 210 nm for lansoprazole; 25 mM phosphate buffer, pH 7, 15 mM sulfobutyl‐ether‐β‐CD/30 mM γ‐CD, +20 kV voltage; 18°C temperature; 50 mbar/3 s injection, detection at 210 nm for rabeprazole) provided baseline separation for lansoprazole (Rs = 2.91) and rabeprazole (Rs = 2.53) enantiomers with favorable migration order (in both cases the S‐enantiomers migrates first). The optimized methods were validated according to current guidelines and proved to be reliable, linear, precise, and accurate for the determination of 0.15% distomer as chiral impurity in dexlansoprazole and dexrabeprazole samples.  相似文献   

6.
A method using micellar electrokinetic chromatography coupled with large-volume sample stacking for the determination of ticagrelol was developed and validated. The analysis was performed in a fused silica capillary (41.5 cm effective length, 50 μm diameter) with ultraviolet detection at 195 nm. The background electrolytes were 30 mM phosphate buffer of pH 3.0 with 120 mM sodium dodecylsulfate and 10 % (v/v) acetonitrile (120 s X 50 mbar; 20°C; -18 kV) and 30 mM borate buffer of pH 8.5 with 75 mM sodium dodecylsulfate (120 s X 50 mbar; 20°C; 25 kV); under acidic and alkaline conditions, respectively. The method was found to be reliable with respect to specificity, linearity of the calibration line (R2 > 0.99), repeatability (relative standard deviation 2.56%–3.34%), and accuracy (recovery in the range 101.21%–102.67%). The limits of detection and quantitation were 0.032, 0.071, and 0.087, 0.188 μg/mL, respectively. The method was successfully applied for the determination of ticagrelol concentrations in rat plasma and tablets with good recoveries and reproducibility. The presented method proved to be suitable for monitoring ticagrelor in rat plasma.  相似文献   

7.
Chiral resolution of native DL-tartaric acid was performed by ligand-exchange capillary electrophoresis using copper(II)-D-quinic acid as a chiral selector. Factors affecting chiral resolution, migration time, and peak area of tartaric acid were studied. The running conditions for optimum separation of tartaric acid were found to be 1 mM copper(II) sulfate-10 mM D-quinic acid (pH 5.0) with an effective voltage of -15 kV at 30 degrees C, using direct detection at 250 nm, and resolution of racemic tartaric acid was approximately 1.3. With this system, chiral resolution of DL-tartaric acid in food products was conducted successfully.  相似文献   

8.
Wu  Jianfeng  Liu  Peng  Wang  Qingwei  Chen  Hui  Gao  Peng  Wang  Li  Zhang  Shengyong 《Chromatographia》2011,74(11):789-797

The enantiomeric separation of several basic drugs was investigated using copper(II)–clindamycin as a new chiral selector. The results show that the chiral selector allows high-resolution separation of some racemic basic drugs, including tropicamide, propranolol, sotalol, bisoprolol, epinephrine, esmolol, atenolol, and metoprolol. The enantioselectivity was influenced by parameters such as the type of metal ion, ratio of clindamycin and Cu(II), pH of the background electrolyte, clindamycin concentration, applied voltage, and capillary temperature. The optimal separation conditions were determined to be 20 mM clindamycin/10 mM Cu2+, pH 9.06, at 20 kV and 22 °C within 25 min.

  相似文献   

9.
The enantiomeric separation of several basic drugs was investigated using copper(II)?Cclindamycin as a new chiral selector. The results show that the chiral selector allows high-resolution separation of some racemic basic drugs, including tropicamide, propranolol, sotalol, bisoprolol, epinephrine, esmolol, atenolol, and metoprolol. The enantioselectivity was influenced by parameters such as the type of metal ion, ratio of clindamycin and Cu(II), pH of the background electrolyte, clindamycin concentration, applied voltage, and capillary temperature. The optimal separation conditions were determined to be 20 mM clindamycin/10 mM Cu2+, pH 9.06, at 20 kV and 22 °C within 25 min.  相似文献   

10.
Summary Capillary electrophoresis with indirect UV detection at 254 nm was applied to simultaneous determination of ∼20% of azelaic acid and ∼0.1% of sorbic acid in AKNOREN cream. The acids were separated in fused silica capillary (45 cm × 50 μm) at 30 kV. Optimised back-ground electrolyte was 30 mM benzoate buffer (pH∼6, adjusted with TRIS) containing 7 mM β-cyclodextrin and 5% of methanol; internal standard was 2-hydroxysobutyric acid (HIBA). Rectilinear calibration ranges were 0.4–4 mg mL−1 for azelaic acid and 2–20 μg mL−1 for sorbic acid and the recoveries were 97.2–100.5%. A single analysis took <15 min.  相似文献   

11.
Separation of 6Li and 7Li isotopes by CZE was demonstrated. The BGE contained 5 mM 4‐aminopyridine, 0.9 mM oxalic acid, 0.25 mM CTAB, and 0.25% w/v Tween 20 (рН = 9.2). The running conditions were +25 kV at 30°C with indirect photometric detection at 261 nm. Under optimal experimental conditions, the analysis time was less than 21 min. Separation of Li preparations with mole fraction of 6Li ranging from 3.44 up to 90.38% was demonstrated.  相似文献   

12.
Chiral resolution of native DL-malic acid was achieved by ligand-exchange capillary electrophoresis using copper(II)-L-tartrate as a chiral selector. Factors affecting chiral resolution, migration time, and peak area of malic acid were studied. The running conditions for optimum separation of malic acid were found to be 1 mM copper(II) sulfate-1 mM L-tartrate (pH 5.1) with an effective voltage of -20 kV at 30 degrees C, using direct detection at 280 nm, and resolution (Rs) of racemic malic acid was approximately 4. With this system, D- and L-malic acids in apple juice were analyzed successfully.  相似文献   

13.
Six reducing monosaccharides (mannose, galactose, fucose, glucose, xylose, and arabinose) were derivatized with 8-aminonaphthalene-1,3,6-trisulfonate (ANTS). Based on the chiral ligand-exchange principle using borate as a central ion of the chiral selector and (S)-3-amino-1,2-propanediol (SAP) as a chiral selector ligand, all of the six ANTS-monosaccharides were simultaneously enantioseparated using absorbance at 245 nm for detection. The optimum conditions for both high resolution and moderately short migration time consisted of 200 mM SAP-200 mM borate buffer (pH 9.2) containing 10% ACN as a BGE at 30 degrees C with an applied voltage of +30 kV. It was revealed that the proposed chiral ligand-exchange CE using the SAP-borate system was applicable to enantioseparation of not only diols but also polyols.  相似文献   

14.
A new sensitive method has been developed for the determination of haloalkane dehalogenase activity. The enzymatic reactions were carried out directly in thermostatted autosampler vials and the formation of product - bromide or chloride ions - was monitored by sequential capillary zone electrophoresis runs. The determinations were performed in a 75 microm fused-silica capillary using 5 mM chromate, 0.5 mM tetradecyltrimethylammonium bromide (pH 8.4) as a background electrolyte, separation voltage 15 kV (negative polarity) and indirect detection at sample wavelength 315 nm, reference wavelength 375 nm for brominated and chlorinated substrates, respectively 0.1 M beta-alanine-HCl (pH 3.50) as a background electrolyte, separation voltage 18 kV (negative polarity) and direct detection at 200 nm for brominated substrates. The temperature of capillary was in both cases 25 degrees C. The method is rapid, can be automated, and requires only small amount of enzyme preparation and substrate.  相似文献   

15.
Response surface methodology has been applied to the optimization of a simple and rapid non-aqueous capillary electrophoresis method for the separation and determination of several phenolic compounds belonging to the different families present in olive oil. A Box–Behnken design was employed and a total of 27 experiments were performed using olive oil samples spiked with the phenols and injected directly in the capillary after dilution 1:1 with 1-propanol. Finally, the background electrolyte (BGE) was constituted of 25 mM boric acid and 18 mM KOH in a mixture of 74:26 (v/v) 1-propanol/methanol. The hydrophobicity of the BGE allows its miscibility with the olive oil and, as a consequence, the possibility of characterizing and determining these kinds of compounds in this sample without any pretreatment. A hydrodynamic injection (6 s, −30 mbar) was applied and the separation was carried out using 35 °C and +20 kV of separation temperature and voltage, respectively. A capillary with two detection windows for serial online UV and fluorescence detection was satisfactorily employed. The validation of the method was carried out by setting the calibration curves, and the figures of merit were finally obtained. A lineal relationship between the corrected peak area and concentration and limits of detection in the order of micrograms per milliliter were found.  相似文献   

16.
A capillary electrophoretic method coupled to a diode array detector (CE-DAD) was developed and validated for the simultaneous determination of metformin hydrochloride (MET), the dipeptidyl peptidase-4 (DPP-4) inhibitor saxagliptin hydrochloride (SAX), and the sodium glucose co-transporter (SGLT 2) inhibitor dapagliflozin (DAP). The proposed method was used for the determination of these drugs in binary antidiabetic combinations namely, SAX/MET, combination I, DAP/MET, combination II, and SAX/DAP, combination III. CE separation was performed on a fused silica capillary with background electrolyte consisting of 30?mM phosphate buffer (pH 6.0) with a high voltage of 30?kV, a pressure of 20 mbar, and an injection time of 40?s. The compounds were detected at 203?nm for SAX/DAP and 250?nm for MET. The method was linear in the concentration range of 10–200?µ?g/mL (SAX), 1.25–50?µ?g/mL (DAP), and 7.5–1000?µ?g/mL (MET). Full validation of the proposed method was performed as per the ICH guidelines. The obtained errors and deviation values did not exceed 2% assessing good accuracy and precision, respectively. The stability-indicating potential of the proposed method was proved under different stress-degradation conditions. The proposed method was successfully applied to the analysis of the three binary combinations in their tablets.  相似文献   

17.
Wang P  Li SF  Lee HK 《Talanta》1998,45(4):657-661
Capillary zone electrophoresis (CZE) of nitrate and chlorate in swimming pool water are described. Nitrate and chlorate were determined simultaneously with an indirect detection method in an electrolyte containing 10 mM chromate and 0.1 mM cetyltrimethylammonium bromide (CTAB). Where chloride concentration was so high that nitrate could not be determined satisfactorily because of interference, a direct detection technology was developed in which 10 mM sulfate and 0.1 mM CTAB were used as the buffer. The wavelength for indirect detection was 254 nm and 214 nm for direct detection. Relative standard deviations of the quantification of nitrate and chlorate in real samples were below 6%. The detection limits were 7 mug ml(-1) for chlorate, and 4 mug ml(-1) (indirect detection) and 0.4 mug ml(-1) (direct detection) for nitrate.  相似文献   

18.
Fast isotopic separation of 10B and 11B boric acid by CZE was demonstrated. The BGE contained 25 mM phenylalanine and 5 mM putrescine (рН 8.95). The running conditions were +25 kV at 20°C with indirect photometric detection at 210 nm. Baseline separation was achieved in less than 9 min. RSD of migration times and corrected peak areas were less than 0.5 and 3%, respectively (n = 5). Linearity was demonstrated in the range 0.2–2 mM for 11B and 0.2–0.5 mM for 10B.  相似文献   

19.
A rapid, simple and reliable capillary electrophoresis method for the separation and quantitation of inorganic cations with indirect UV detection at 214 nm was developed. The electrolyte was: 12 mM imidazole as background absorbance provider; 5 mM malic acid and 1.0 mM 18-crown-6 ether as complexing agents; and 20% D2O (v/v) to improve ion mobility. The pH was 4.25. The applied voltage was 22 kV at 22°C. Nine ions were completely separated and determined with correlation coefficients of 0.9979-0.9992. The relative standard deviations (RSD) were less than 0.5% for migration time and less than 5.2% for peak area (n=8). The detection limits (S/N=3) were from 0.08 mg L−1 (for Na+) to 0.51 mg L−1 (for Cu2+). To assess the reliability atomic absorption (AA) was also used to determine the same samples. Satisfactory results were obtained for real samples of jasmine tea drink and coconut milk.   相似文献   

20.
Method of capillary electrophoresis with a diode-array detector was used to study the conditions of the separation of three alkyl methylphosphonates and methylphosphonic acid, hydrolysis products of nerve agents. The optimal conditions providing their separation and determination are reported (background electrolyte based on 100 mM boric acid with the addition of 10 mM of phenylphosphonic acid (pH 6.0); voltage +30 kV, detection wavelength 210 nm, electrokinetic introduction of the sample (10 kV, 10 sec), separation time below 10 min). Calibration curve for all the compounds was linear in the concentration range 0.05–1.0 mg/mL, the correlation coefficient was 0.999 in all cases. The procedure was tested for river and ground waters containing a mixture of isopropyl, isobutyl, pinacolyl methylphosphonates and methylphosphonic acid. Relative standard deviations of the migration times under the conditions of the repeatability of the results lie in the range 1.9–2.7% (n = 5), the relative standard deviation of the reduced peak areas vary from 1.2 to 7.0%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号