首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 13 毫秒
1.
In this study, several lone pair–π and aerogen–π complexes between XeO3 and XeF4 and aromatic rings with different electronic natures (benzene, trifluorobenzene, and hexafluorobenzene) are optimized at the RI‐MP2/aug‐cc‐pVTZ level of theory. All complexes are characterized as true minima by frequency analysis calculations. The donor/acceptor role of the ring in the complexes is analyzed using the natural bond orbital computational tool, showing a remarkable contribution of orbital interactions to the global stabilization of the aerogen–π complexes. Finally, Bader's AIM analysis of several complexes is performed to further characterize the lone pair–π and aerogen–π interactions.  相似文献   

2.
This article analyzes the interplay between lone pair–π (lp–π) or anion–π interactions and halogen‐bonding interactions. Interesting cooperativity effects are observed when lp/anion–π and halogen‐bonding interactions coexist in the same complex, and they are found even in systems in which the distance between the anion and halogen‐bond donor molecule is longer than 9 Å. These effects are studied theoretically in terms of energetic and geometric features of the complexes, which are computed by ab initio methods. Bader′s theory of “atoms in molecules” is used to characterize the interactions and to analyze their strengthening or weakening depending upon the variation of charge density at critical points. The physical nature of the interactions and cooperativity effects are studied by means of molecular interaction potential with polarization partition scheme. By taking advantage of all aforementioned computational methods, the present study examines how these interactions mutually influence each other. Additionally, experimental evidence for such interactions is obtained from the Cambridge Structural Database (CSD).  相似文献   

3.
In line with previous work in which we established the factors that enhance attractive C?H···H?C dihydrogen interactions in alkanes, an extended theoretical analysis of noncovalent intermolecular interactions in group 14 hydrides is presented here. Remarkably, these weak interactions may play a major role in determining the crystal structures adopted by several families of molecules. A combined structural and computational analysis at the MP2 level allowed us to identify and characterize different interactions of the type E?H···H?E and E···H?E (E = Si, Ge, Sn, and Pb), and to find also the most suitable scenario for the establishment of each particular type. The nature of the interactions has been analyzed in terms of natural charges of the atoms involved and a topological analysis of the electron density of several dimers confirms the existence of H···H and H···E attractive contacts. We have observed that the interaction strength increases when descending down the periodic group and that silicon has a marked tendency to establish Si···H?Si interactions. A size‐dependent backbone effect that reinforces H···H dihydrogen interactions in polyhedral systems has also been found.  相似文献   

4.
The interaction of isolated aromatic nitrogen atoms with water is explored within free jets by using rotational spectroscopy. To the existing data on diazines, we add the case of the 1:1 complex of 1,3,5‐triazine and water (where water donates a proton to one of the nitrogen heterocyclic atoms to form a planar adduct). An electrostatic model based on distributed multipoles accurately reproduces the structures of the four azine–water complexes and allows us to understand the forces that stabilize these structures. The applied intermolecular potential allows us to estimate the changes in the thermodynamic functions of the complexes—compared to the separated constituents—and evaluate the temperature at which the complexes are stable under standard conditions.  相似文献   

5.
In line with previous work in which we established the factors that enhance attractive C? H···H? C dihydrogen interactions in alkanes, an extended theoretical analysis of noncovalent intermolecular interactions in group 14 hydrides is presented here. Remarkably, these weak interactions may play a major role in determining the crystal structures adopted by several families of molecules. A combined structural and computational analysis at the MP2 level allowed us to identify and characterize different interactions of the type E? H···H? E and E···H? E (E = Si, Ge, Sn, and Pb), and to find also the most suitable scenario for the establishment of each particular type. The nature of the interactions has been analyzed in terms of natural charges of the atoms involved and a topological analysis of the electron density of several dimers confirms the existence of H···H and H···E attractive contacts. We have observed that the interaction strength increases when descending down the periodic group and that silicon has a marked tendency to establish Si···H? Si interactions. A size‐dependent backbone effect that reinforces H···H dihydrogen interactions in polyhedral systems has also been found.  相似文献   

6.
In an effort to better understand the nature of noncovalent carbon‐bonding interactions, we undertook accurate high‐resolution X‐ray diffraction analysis of single crystals of 1,1,2,2‐tetracyanocyclopropane. We selected this compound to study the fundamental characteristics of carbon‐bonding interactions, because it provides accessible σ holes. The study required extremely accurate experimental diffraction data, because the interaction of interest is weak. The electron‐density distribution around the carbon nuclei, as shown by the experimental maps of the electrophilic bowl defined by a (CN)2C?C(CN)2 unit, was assigned as the origin of the interaction. This fact was also evidenced by plotting the Δ2ρ(r) distribution. Taken together, the obtained results clearly indicate that noncovalent carbon bonding can be explained as an interaction between confronted oppositely polarized regions. The interaction is, thus electrophilic–nucleophilic (electrostatic) in nature and unambiguously considered as attractive.  相似文献   

7.
We present a general theory to model the spatially resolved non‐resonant Raman images of molecules. It is predicted that the vibrational motions of different Raman modes can be fully visualized in real space by tip‐enhanced non‐resonant Raman scattering. As an example, the non‐resonant Raman images of water clusters were simulated by combining the new theory and first‐principles calculations. Each individual normal mode gives rise its own distinct Raman image, which resembles the expected vibrational motions of the atoms very well. The characteristics of intermolecular vibrations in supermolecules could also be identified. The effects of the spatial distribution of the plasmon as well as nonlinear scattering processes were also addressed. Our study not only suggests a feasible approach to spatially visualize vibrational modes, but also provides new insights in the field of nonlinear plasmonic spectroscopy.  相似文献   

8.
The interactions in the complexes of tetracyanothylene (TCNE) with benzene and p‐xylene, often classified as weak electron donor–acceptor (EDA) complexes, are investigated by a range of quantum chemical methods including intermolecular perturbation theory at the DFT‐SAPT (symmetry‐adapted perturbation theory combined with density functional theory) level and explicitly correlated coupled‐cluster theory at the CCSD(T)‐F12 level. The DFT‐SAPT interaction energies for TCNE–benzene and TCNE–p‐xylene are estimated to be ?35.7 and ?44.9 kJ mol?1, respectively, at the complete basis set limit. The best estimates for the CCSD(T) interaction energy are ?37.5 and ?46.0 kJ mol?1, respectively. It is shown that the second‐order dispersion term provides the most important attractive contribution to the interaction energy, followed by the first‐order electrostatic term. The sum of second‐ and higher‐order induction and exchange–induction energies is found to provide nearly 40 % of the total interaction energy. After addition of vibrational, rigid‐rotor, and translational contributions, the computed internal energy changes on complex formation approach results from gas‐phase spectrophotometry at elevated temperatures within experimental uncertainties, while the corresponding entropy changes differ substantially.  相似文献   

9.
The structures associated with halide (F?, Cl?, Br?) complexation inside CH hydrogen‐bonding macrocyclic receptors, called triazolophanes, are characterized using density functional theory (DFT). The associated binding energies in the gas and solution phases are evaluated. The ruffles in the empty triazolophane become smoothed‐out upon Cl?‐ and Br?‐ion binding directly into the middle of the cavity. The largely pre‐organized cavity morphs into an elliptical shape to facilitate shorter hydrogen bonds in the north and south regions and longer ones west and east. The smaller F? ion sits in, and flattens‐out, only the north (or south) region. The 1,2,3‐triazoles show shorter CH???Cl? contacts than for the phenylenes. Both Cl? and Br? show the same binding geometries but Cl? has a larger binding energy consistent with its stronger Lewis basicity. Model triads were used to decompose the overall binding energy into those of its components. In the course of this triad analysis, anion polarization was identified and its contribution to the triad???Cl? binding energy estimated. Consequently, the binding energies for the individual aryl units within the comparatively non‐polarized triazolophanes were estimated. The 1,2,3‐triazoles are twice as strong as the phenylenes thus contributing most of the interaction energy to Cl?‐ion binding. Therefore, the 1,2,3‐triazoles appear to approach the hydrogen bond strengths of the NH donors of pyrrole units.  相似文献   

10.
11.
12.
13.
We report an accurate computational study of the role of water in transfer hydrogenation of formaldehyde with a ruthenium‐based catalyst using a water‐specific model. Our results suggest that the reaction mechanism in aqueous solution is significantly different from that in the gas phase or in methanol solution. Previous theoretical studies have shown a concerted hydride and proton transfer in the gas phase (M. Yamakawa, H. Ito, R. Noyori, J. Am. Chem. Soc. 2000 , 122, 1466–1478;J.‐W. Handgraaf, J. N. H. Reek, E. J. Meijer, Organometallics 2003 , 22, 3150–3157; D. A. Alonso, P. Brandt, S. J. M. Nordin, P. G. Andersson, J. Am. Chem. Soc. 1999 , 121, 9580–9588; D. G. I. Petra, J. N. H. Reek, J.‐W. Handgraaf, E. J. Meijer, P. Dierkes, P. C. J. Kamer, J. Brussee, H. E. Schoemaker, P. W. N. M. van Leeuwen, Chem. Eur. J. 2000 , 6, 2818–2829), whereas a delayed, solvent‐mediated proton transfer has been observed in methanol solution (J.‐W. Handgraaf, E. J. Meijer, J. Am. Chem. Soc. 2007 , 129, 3099–3103). In aqueous solution, a concerted transition state is observed, as in the previous studies. However, only the hydride is transferred at that point, whereas the proton is transferred later by a water molecule instead of the catalyst.  相似文献   

14.
15.
Tetrel (Tr) bonding is first placed into perspective as a σ‐hole bonding interaction with atoms of the Tr family. An sp3 R4Tr unit has four σ‐holes with which a Lewis base can form a complex. We then highlight some inspiring crystal structures where Tr bonding is obvious, followed by an account of our own work. We have shown that Tr bonding is ubiquitous in the solid state and we have highlighted that Tr bonding with carbon is possible when C is placed in the appropriate chemical context. We hope that this account serves as an initial guide and source of inspiration for others wishing to exploit this vastly underexplored interaction.  相似文献   

16.
17.
18.
Inclusion complexes of cyclobis(paraquat‐p‐phenylene) and various aromatic molecules in their neutral and oxidized form were studied at the LMP2/6‐311+G**//BHandHLYP/6‐31G* level of theory, which represents the highest level theoretical study to date for these complexes. The results show that it is dispersion interaction that contributes most to the binding energy. One electron oxidation of a guest molecule leads to complete dissociation of inclusion complex generating strong repulsion potential between guest and host molecules. Electrostatic interactions also can play an important role, provided the guest molecule has a dipole moment; however, dispersion interactions always dominate in binding energy. © 2004 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

19.
20.
Complete active space (CASSCF) and multireference (MR‐CISD(Q) and MR‐AQCC) calculations were performed for non‐Kekulé analogues of acenes, dimethylenepolycyclobutadienes, with lengths of up to eight cyclobutadiene (CBD) units. Multireference calculations predict that the most stable energy state of the system is either triplet (if there is an odd number of CBD units) or singlet (if there is an even number of CBD units) due to antiferromagnetic spin coupling, which thus violates Hund's rule in larger molecules. We also show an impressive polyradical character in the system that increases with the size of the molecule, as witnessed by more than eleven unpaired electrons in the singlet state of the molecule with eight CBD units. Together with the small energy gap between singlet and higher multiplicity energy states even above the triplet state, this demonstrates the exceptional polyradical properties of these π‐conjugated oligomeric chains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号