首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We first found experimentally a cycloaddition reaction of a molecule on a symmetry Si pair, 1,3-butadiene on the Si adatom pair of Si(111)7x7, while up to now only asymmetric Si pairs were reported to be involved in cycloaddition reactions on Si surfaces. As the symmetry of a Si pair is expected to influence significantly a cycloaddition product and a reaction pathway, the [4+2]-like cycloaddition product of 1,3-butadiene on the Si adatom pair is suggested to form through a concerted reaction pathway in comparison to a stepwise reaction pathway, which is favorable in the formation of the [4+2]-like cycloaddition product on the asymmetric Si pair (the Si adatom-restatom pair).  相似文献   

2.
Using a variable temperature STM to trace in detail the path of single particle movement, it is possible to derive diffusion parameters of individual atoms and molecules on solid surfaces as well as to probe the mechanisms. Below ˜370 °C, O2 molecules adsorb on Si(111)-7×7 surfaces at the top site of Si-adatoms as bright image spots. An O2 molecule can hop between two adatom sites within the half unit cell it adsorbs via two rest-atom sites. Above this temperature, it can either hop out of the half cell, or can go through other reaction pathways. In contrast, for H atoms, the adsorption sites are rest-atom sites. An H atom darkens the rest-atom in filled state image, but the surrounding adatoms will appear brighter because of a reverse charge transfer. Above ˜280 °C, it can hop to a neighbor rest atom site within the half cell via an adatom site. The adatom in the short lived intermediate state appears darker because of the saturation of its dangling bond. Above ˜340 °C, it can hop out of the half cell via two adatom sites. Thus diffusion of H and O2 on this surface is achieved by hopping of chemical bonds via intermediate states. We have also derived site and pathway-specific activation energies and frequency factors and the potential energy curves for the hopping of O2 and H on Si(111)-7×7 surfaces.  相似文献   

3.
The favorable position of an adatom and the formation energies of a single vacancy and an adatom‐vacancy pair in three low‐index surfaces of body‐centered cubic (BCC) transition metals have been calculated by using the modified analytical embedded atom method (MAEAM). The favorable position of an adatom is at the fourfold and twofold positions above the (100) and (110) surfaces respectively, but it is deviated from the threefold position of the (111) surface. Either the heights of the adatom from the top atomic layer, or the formation energies of a single vacancy, or an adatom‐vacancy pair decrease in sequence of the (110), (100) and (111) surfaces for each metal. Furthermore, the formation energy of an adatom‐vacancy pair is always lower than that of a single vacancy for each low‐index surface of each metal, which shown the formation of adatom‐vacancy pair is more energetically favorable than the vacancy for the BCC transition metals. Copyright © 2007 John Wiley & Sons, Ltd.  相似文献   

4.
Fast Li transport in battery electrodes is essential to meeting the demanding requirements for a high-rate capability anode. We studied the intercalation of a Li atom into the surface and subsurface layers of Si(100) and Si(111) using density functional calculations with a slab representation of the surfaces. We suggest that the Li atom migrates on the Si surfaces and is subsequently inserted into the inside for both Si(100) and Si(111). The rate-determining steps are the surface incorporation and subsurface diffusion in Si(100) and Si(111), respectively. Our diffusion rate calculations reveal that, once the Li atom is incorporated into the Si surface, Li diffuses faster by at least two orders of magnitude along the <100> direction than along the <111> direction. The importance of careful treatment of the slab thickness for the study of impurity insertion into subsurface layers is also stressed.  相似文献   

5.
The dissociation and formation of water on the Rh(111) and Ni(111) surfaces have been studied using density functional theory with generalized gradient approximation and ultrasoft pseudopotentials. Calculations have been performed on 2x2 surface unit cells, corresponding to coverages of 0.25 ML, with spot checks on 3x3 surface unit cells (0.11 ML). On both surfaces, the authors find that water adsorbs flat on top of a surface atom, with binding energies of 0.35 and 0.25 eV, respectively, on Rh(111) and Ni(111), and is free to rotate in the surface plane. Barriers of 0.92 and 0.89 eV have to be overcome to dissociate the molecule into OH and H on the Rh(111) and Ni(111) surfaces, respectively. Further barriers of 1.03 and 0.97 eV need to be overcome to dissociate OH into O and H. The barriers for the formation of the OH molecule from isolated adsorbed O and H are found to be 1.1 and 1.3 eV, and the barriers for the formation of the water molecule from isolated adsorbed OH and H are 0.82 and 1.05 eV on the two surfaces. These barriers are found to vary very little as coverage is changed from 0.25 to 0.11 ML. The authors have also studied the dissociation of OH in the presence of coadsorbed H or O. The presence of a coadsorbed H atom only weakly affects the energy barriers, but the effect of O is significant, changing the dissociation barrier from 1.03 to 1.37 and 1.15 eV at 0.25 or 0.11 ML coverage on the Rh(111) surface. Finally, the authors have studied the dissociation of water in the presence of one O atom on Rh(111), at 0.11 ML coverage, and the authors find a barrier of 0.56 eV to dissociate the molecule into OH+OH.  相似文献   

6.
We experimentally demonstrated that pyridine/Si(111)-7 x 7 can act as an electron donor/acceptor pair as a result of the charge transfer from the electron-rich N atom of pyridine to the electron-deficient adatom of the Si surface, evidenced by the upshift of 1.8 eV (state A) for the N(1s) core level upon the formation of a datively bonded complex compared to physisorbed molecules. Another state (B) whose N(1s) binding energy downshifts by 1.2 eV was assigned to an adduct through Si-C and Si-N covalent linkages, formed via a [4 + 2]-like addition mechanism on Si(111)-7 x 7. Binding molecules through the formation of the dative bond resulted from significant electron transfer opens a new approach for the creation of Si-based molecular architectures and modification of semiconductor interfacial properties with unsaturated organic molecules.  相似文献   

7.
The mechanisms for the complete decomposition of water molecules on the Si (111)‐7 × 7 surface were investigated theoretically. The reaction pathways for dissociation of four water molecules over the adatom and rest atom sites were calculated using the density functional theory (DFT) in conjunction with the B3LYP functional. The calculated results demonstrated that the initial O? H bond dissociation from the first H2O to form the adsorbed OH species is more preferential on the adatom site (Sia) than the rest atom site (Sir) of Si (111)‐7 × 7. Four water molecules dissociate successively over the adatom site, backbonds of adatoms which are saturated by OH species can reasonably be the place of insertion of oxygen atoms, yielding a tetrahedral SiO4 structure with one on top and three inserted oxygen atoms. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

8.
Si(111) surfaces have been functionalized with Si-CC-R species, where R = H or -CH3, using a two-step reaction sequence involving chlorination of H-Si(111) followed by treatment with Na-CC-H or CH3-CC-Na reagents. The resulting surfaces showed no detectable oxidation as evidenced by X-ray photoelectron spectroscopic (XPS) data in the Si 2p region, electrochemical measurements of Si-H oxidation, or infrared spectroscopy. The Si-CC-R-terminated surfaces exhibited a characteristic CC stretch in the infrared at 2179 cm-1, which was strongly polarized perpendicular to the Si(111) surface plane. XPS measurements in the C 1s region showed a low binding energy peak indicative of Si-C bonding, with a coverage that was, within experimental error, identical to that of the CH3-terminated Si(111) surface, which has been shown to fully terminate the Si atop sites on an unreconstructed Si(111) surface. The Si-CC-H-terminated surfaces were further functionalized by exposure to n-C4H9Li followed by exposure to para Br-C6H5-CF3, allowing for introduction of para -C6H5CF3 groups while maintaining the desirable chemical and electrical properties that accompany complete Si-C termination of the atop sites on the Si(111) surface.  相似文献   

9.
Ultrahigh vacuum scanning tunneling microscopy data investigating octylsilane (C8H17SiH3) monolayer pattern formation on Au(111) are presented. The irregular monolayer pattern exhibits a 60 A length scale. Formation of the octylsilane monolayer relaxes the Au(111) 23 x square root3 surface reconstruction and ejects surface Au atoms. Au adatom diffusion epitaxially extends the Au(111) crystal lattice via step edge growth and island formation. The chemisorbed monolayer covers the entire Au surface at saturation exposure. Theoretical and experimental data suggest the presence of two octylsilane molecular adsorption phases: an atop site yielding a pentacoordinate Si atom and a surface vacancy site yielding a tetracoordinate Si atom. Theoretical simulations investigating two-phase monolayer self-assembly dynamics on a solid surface suggest pattern formation results from strain-induced spinodal decomposition of the two adsorption phases. Collectively, the theoretical and experimental data indicate octylsilane monolayer pattern formation is a result of interfacial Au-Si interactions and the alkyl chains play a negligible role in the monolayer pattern formation mechanism.  相似文献   

10.
The mechanism of the electroreduction of oxygen on bare and Bi-submonolayer-modified Au(111) surfaces is examined using surface enhanced Raman scattering (SERS) measurements along with detailed density functional theory (DFT) calculations. The spectroscopy reveals the presence of superoxide-level species at potentials where oxygen is reduced. These species are not present in solutions absent either oxygen or Bi at these potentials. The spectroscopy also reveals the presence of Bi-OH species which are associated with peroxide reduction. Detailed calculations show oxygen associates much more strongly with Bi in the (2 x 2) configuration on Au(111) relative to the bare Au surface. Additionally, the O-O bond is elongated following O2 association, which follows as a consequence of Bi-O bond formation and partial oxidation of the Bi adatom. These results show for the first time that the four-electron electroreduction of oxygen electroreduction occurs via a series pathway on the Bi-modified surface in acid solution.  相似文献   

11.
Continuous-time core-level photon-stimulated desorption (PSD) spectroscopy was used to study the soft x-ray-induced reactions of CF(3)Br molecules adsorbed on Si(111)-7×7 near the Si(2p) edge (98-110 eV). The monochromatic synchrotron radiation was employed as a soft x-ray light source in the photon-induced reactions and also as a probe for investigating the produced fluorination states of the bonding surface Si atom in the positive-ion PSD spectroscopy. Several different surface coverages were investigated. The PSD spectra from the low-CF(3)Br-covered surfaces show the production of surface SiF species, while those from the high-CF(3)Br-covered surfaces depict the formation of surface SiF, SiF(2), and SiF(3) species. The photolysis cross section of the submonolayer CF(3)Br-covered surface is determined as ~4.3×10(-18) cm(2). A comparison with the results on CF(3)Cl/Si(111)-7×7 surface is discussed.  相似文献   

12.
Redox kinetics were measured for two electroactive molecules attached to Si(100) surfaces, a ferrocene (Fc-BzOH) and a Zn(II) trimesitylporphyrin (Por-BzOH). Each molecule was derivatized with a benzyl alcohol linker for attachment to the Si surface via the formation of a Si-O bond. A complete protocol was developed for the preparation of stable Si(100) surfaces derivatized with the electroactive molecules. The redox-kinetic measurements were performed on the resulting Fc-BzOH and Por-BzOH monolayers to probe (1) the rate of electron transfer (k0) for oxidation in the presence of applied potentials and (2) the rate of charge dissipation after the applied potential is disconnected (in the form of a charge-retention half-life t1/2). The k0 values for the two types of monolayers were found to be similar to one another as were the t1/2 values. Perhaps more importantly, the electron-transfer rates for both the Fc-BzOH and the Por-BzOH monolayers differ from the charge-dissipation rates by approximately 6 orders of magnitude and are strongly dependent on the surface concentration of the electroactive species. For the Por-BzOH monolayers on Si(100), the k0 and t1/2 values and their trends as a function of surface coverage were determined to be similar to those previously measured for the analogous thiol-derivatized molecule assembled on Au(111). In contrast, the Fc-BzOH monolayers on Si(100) were found to exhibit much slower electron-transfer and charge-dissipation rates than those in the corresponding thiol-Au(111) case. Two alternative hypotheses are advanced to explain both the diminution in rates with increased surface coverage and the contrasting behavior with the analogous thiols on Au, one based on space-charge effects at the monolayer-solution interface, and a second relying on changes in distance of the redox centers from the surface as modulated by the orientation of the linking chains. Collectively, the ability to prepare and study stable, electroactive molecular media on Si(100) is likely to be key in the development of hybrid molecular/semiconductor devices.  相似文献   

13.
The surface structure, strain energy, and charge profile of the methoxylated Si(111) surface, Si(111)-OCH3, has been studied using quantum mechanics, and the results are compared to those obtained previously for Si(111)-CH3 and Si(111)-C2H5. The calculations indicate that 100% coverage is feasible for Si(111)-OCH3 (similar to the methylated surface), as compared to only approximately 80% coverage for the ethylated surface. These differences can be understood in terms of nearest-neighbor steric and electrostatic interactions. Enthalpy and free energy calculations indicate that the formation of the Si(111)-OCH3 surface from Si(111)-H and methanol is favorable at 300 K. The calculations have also indicated the conditions under which stacking faults can emerge on Si(111)-OCH3, and such conditions are contrasted with the behavior of Si(111)-CH3 and Si(111)-CH2CH3 surfaces, for which stacking faults are calculated to be energetically feasible when etch pits with sufficiently long edges are present on the surface.  相似文献   

14.
A new method for the formation of molecular monolayers on silicon surfaces utilizing gas-phase photochemical reactions is reported. Hydrogen-terminated Si(111) surfaces were exposed to various gas-phase molecules (hexene, benzaldehyde, and allylamine) and irradiated with ultraviolet light from a mercury lamp. The surfaces were studied with in situ Fourier transform infrared spectroscopy, high-resolution electron energy loss spectroscopy, and scanning tunneling microscopy. The generation of gas-phase radicals was found to be the initiator for organic monolayer formation via the abstraction of hydrogen from the H/Si(111) surface. Monolayer growth can occur through either a radical chain reaction mechanism or through direct radical attachment to the silicon dangling bonds.  相似文献   

15.
The growth of pentacene films on different metal (Ga, Pb, Bi, Ag) induced Si(111)-(square root(3) x square root(3))R30 degrees surfaces is investigated by scanning tunneling microscopy. On surfaces with high atomic surface roughness, such as GaSi-square root(3), beta-PbSi-square root(3), and alpha-BiSi-square root(3), pentacene forms an initial disordered wetting layer followed by the growth of crystalline thin films. The growth behavior is independent of the metallicity of the substrate surface in this regime. On the other hand, on surfaces with low adatom surface roughness, pentacene molecules form self-organized structures without forming a wetting layer. Moreover, the molecular orientation is critically dependent on the surface metallicity. This work reveals that the growth mode of pentacene on solid surfaces is determined by the combined effects of structural and electronic properties of the substrate.  相似文献   

16.
A thorough investigation of the adsorption and diffusion of Mg, O, and O(2) on MgO(001) terraces is performed by first-principles calculations. The single Mg adatom weakly binds to surface oxygens, diffuses, and evaporates easily at room temperatures. Atomic O strongly binds to surface oxygens, forming peroxide groups. The diffusion of the O adatom is strongly influenced by the spin polarization, since energy barriers are significantly different for the singlet and triplet states. The crossing of the two Born-Oppenheimer surfaces corresponding to the distinct spin states is also analyzed. Although the O(2) molecule does not stick to the perfect surface, it chemisorbs on surface nonstoichiometric point defects such as O vacancies or Mg adatoms, forming in the latter case new chemical species on the surface. We show that the oxidation rate limiting factor in an O(2) atmosphere is the concentration of point defects (O vacancies and Mg adatoms) in the growing surface. The simulated O core-level shifts for the various adsorption configurations enable a meaningful comparison with the measured values, suggesting the presence of peroxide ions on growing surfaces. Finally, the computed energy barriers are used to estimate the Mg and O surface lifetimes and diffusion lengths, and some implications for the homoepitaxial growth of MgO are discussed.  相似文献   

17.
Scanning tunneling microscopy (STM) and computational modeling have been used to study the structure of ethyl-terminated Si(111) surfaces. The ethyl-terminated surface was prepared by treating the H-terminated Si(111) surface with PCl5 to form a Cl-terminated Si(111) surface with subsequent exposure to C(2)H(5)MgCl in tetrahydrofuran to produce an alkylated Si(111) surface. The STM data at 77 K revealed local, close-packed, and relatively ordered regions with a nearest-neighbor spacing of 0.38 nm as well as disordered regions. The average spot density corresponded to approximately 85% of the density of Si atop sites on an unreconstructed Si(111) surface. Molecular dynamics simulations of a Si(111) surface randomly populated with ethyl groups to a total coverage of approximately 80% confirmed that the ethyl-terminated Si(111) surface, in theory, can assume reasonable packing arrangements to accommodate such a high surface coverage, which could be produced by an exoergic surface functionalization route such as the two-step chlorination/alkylation process. Hence, it is possible to consistently interpret the STM data within a model suggested by recent X-ray photoelectron spectroscopic data and infrared absorption data, which indicate that the two-step halogenation/alkylation method can provide a relatively high coverage of ethyl groups on Si(111) surfaces.  相似文献   

18.
We present a theoretical study in the framework of density functional calculations, taking into account the van der Waals interactions (DFT‐D) of isolated Cu‐5,10,15,20‐tetrakis(3,5‐di‐tert‐butyl‐phenyl) porphyrin (Cu‐TBPP) molecules in a C2v conformation adsorbed on a Si(111)√3x√3R30°‐boron surface [denoted Si(111)‐B]. With this approach, we investigate interactions between perfect or boron‐defect Si(111)‐B substrates and the Cu‐TBPP molecule as well as the consequences of demetallation of Cu‐TBPP. For each model, we determine the structural equilibrium, the spatial charge‐density distribution and the electronic properties of the ground state. We conclude that there is potential for Si adatom capture by a porphyrin without strong modification of the porphyrin response, as seen from simulated scanning tunneling microscopy (STM) images.  相似文献   

19.
Hydrogen-terminated, chlorine-terminated, and alkyl-terminated crystalline Si(111) surfaces have been characterized using high-resolution, soft X-ray photoelectron spectroscopy from a synchrotron radiation source. The H-terminated Si(111) surface displayed a Si 2p(3/2) peak at a binding energy 0.15 eV higher than the bulk Si 2p(3/2) peak. The integrated area of this shifted peak corresponded to one equivalent monolayer, consistent with the assignment of this peak to surficial Si-H moieties. Chlorinated Si surfaces prepared by exposure of H-terminated Si to PCl5 in chlorobenzene exhibited a Si 2p(3/2) peak at a binding energy of 0.83 eV above the bulk Si peak. This higher-binding-energy peak was assigned to Si-Cl species and had an integrated area corresponding to 0.99 of an equivalent monolayer on the Si(111) surface. Little dichloride and no trichloride Si 2p signals were detected on these surfaces. Silicon(111) surfaces alkylated with CnH(2n+1)- (n = 1 or 2) or C6H5CH2- groups were prepared by exposing the Cl-terminated Si surface to an alkylmagnesium halide reagent. Methyl-terminated Si(111) surfaces prepared in this fashion exhibited a Si 2p(3/2) signal at a binding energy of 0.34 eV above the bulk Si 2p(3/2) peak, with an area corresponding to 0.85 of a Si(111) monolayer. Ethyl- and C6H5CH2-terminated Si(111) surfaces showed no evidence of either residual Cl or oxidized Si and exhibited a Si 2p(3/2) peak approximately 0.20 eV higher in energy than the bulk Si 2p(3/2) peak. This feature had an integrated area of approximately 1 monolayer. This positively shifted Si 2p(3/2) peak is consistent with the presence of Si-C and Si-H surface functionalities on such surfaces. The SXPS data indicate that functionalization by the two-step chlorination/alkylation process proceeds cleanly to produce oxide-free Si surfaces terminated with the chosen alkyl group.  相似文献   

20.
应用原子和表面簇合物相互作用的5-参数Morse势(简称5-MP)方法系统地研究了氧-铂台阶面体系.理论结果表明:在Pt(s)-[n(111)×(100)]型台阶面上,氧原子吸附在台阶下的四重位,对应稳定吸附态β2;平台上靠近四重位的三重吸附态被湮灭,其它三重位对应吸附态β1;而且平台的长度对四重吸附态有影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号