首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The principles of the intermolecular relaxation of a nuclear spin by its fluctuating magnetic dipolar interactions with the electronic spins of the paramagnetic surrounding species in solution are briefly recalled. It is shown that a very high dynamic nuclear polarization (DNP) of solvent protons is obtained by saturating allowed transitions of free radicals with a hyperfine structure, and that this effect can be used in efficient Earth field magnetometers. Recent work on trivalent lanthanide Ln3+ aqua complexes in heavy water solutions is discussed, including paramagnetic shift and relaxation rate measurements of the 1H NMR lines of probe solutes. This allows a determination of the effective electronic magnetic moments of the various Ln3+ ions in these complexes, and an estimation of their longitudinal and transverse electronic relaxation times T1e and T2e. Particular attention is given to Gd(III) hydrated chelates which can serve as contrast agents in magnetic resonance imaging (MRI). The full experimental electronic paramagnetic resonance (EPR) spectra of these complexes can be interpreted within the Redfield relaxation theory. Monte-Carlo simulations are used to explore situations beyond the validity of the Redfield approximation. For each Gd(III) complex, the EPR study leads to an accurate prediction of T1e, which can be also derived from an independent relaxation dispersion study of the protons of the probe solutes.  相似文献   

2.
We report solid‐state 1H nuclear magnetic resonance (NMR) spin‐lattice relaxation experiments, X‐ray diffractometry, field‐emission scanning electron microscopy, and both single‐molecule and cluster ab initio electronic structure calculations on 1‐methoxyphenanthrene ( 1 ) and 3‐methoxyphenanthrene ( 2 ) to investigate the rotation of the methoxy groups and their constituent methyl groups. The electronic structure calculations and the 1H NMR relaxation measurements can be used together to determine barriers for the rotation of a methoxy group and its constituent methyl group and to develop models for the two coupled motions.  相似文献   

3.
4.
Electronic transfer protein cytochrome c‐550 from horse heart is studied in the unfolded state by means of paramagnetic 1H NMR. The protein contains 104 aminoacid residues and a heme group with low spin FeIII ion in the oxidized form of protein. The global secondary structure is of the α‐helix type as occurs in the case of very other cytochromes c investigated such as cyt c‐550 from Thiobacillus versutus or cyt c‐551 from Pseudomonas aeruginosa. We have studied the coordination characteristic and electronic properties of heme iron horse heart ferricytochrome c‐550 at increasing denaturing conditions (up to 3.1 M GuHCl and 288‐323 K). The 1H T1 values of the signals were measured and some resonance assignments made based on EXSY experiments. The electronic structure of the iron(III) is discussed on the basis of the temperature dependence of the isotropic shifts and relaxation times. These results show that it is produced a change of spin, from low‐spin iron(III) (2T2, S=1/2) in the folded state to high‐spin iron(III) (6A1, S=5/2) in the unfolded state. It seems to be possible that in the opened structure the ferricyt c‐550 loses one axial ligand (His/‐) appearing the spin transition.  相似文献   

5.
We outline the details of acquiring quantitative 13C cross‐polarization magic angle spinning (CPMAS) nuclear magnetic resonance on the most ubiquitous polymer for organic electronic applications, poly(3‐hexylthiophene) (P3HT), despite other groups' claims that CPMAS of P3HT is strictly nonquantitative. We lay out the optimal experimental conditions for measuring crystallinity in P3HT, which is a parameter that has proven to be critical in the electrical performance of P3HT‐containing organic photovoltaics but remains difficult to measure by scattering/diffraction and optical methods despite considerable efforts. Herein, we overview the spectral acquisition conditions of the two P3HT films with different crystallinities (0.47 and 0.55) and point out that because of the chemical similarity of P3HT to other alkyl side chain, highly conjugated main chain polymers, our protocol could straightforwardly be extended to other organic electronic materials. Variable temperature 1H NMR results are shown as well, which (i) yield insight into the molecular dynamics of P3HT, (ii) add context for spectral editing techniques as applied to quantifying crystallinity, and (iii) show why TH, the 1H spin–lattice relaxation time in the rotating frame, is a more optimal relaxation filter for distinguishing between crystalline and noncrystalline phases of highly conjugated alkyl side‐chain polymers than other relaxation times such as the 1H spin–spin relaxation time, T2H, and the spin–lattice relaxation time in the toggling frame, T1xzH. A 7 ms TH spin lock filter, prior to CPMAS, allows for spectroscopic separation of crystalline and noncrystalline 13C nuclear magnetic resonance signals. Published 2016. This article is a U.S. Government work and is in the public domain in the USA.  相似文献   

6.
Ever since the first example of a double‐decker complex (SnPc2) was discovered in 1936, MPc2 complexes with π systems and chemical and physical stabilities have been used as components in molecular electronic devices. More recently, in 2003, TbPc2 complexes were shown to be single‐molecule magnets (SMMs), and researchers have utilized their quantum tunneling of the magnetization (QTM) and magnetic relaxation behavior in spintronic devices. Herein, recent developments in LnIII‐Pc‐based multiple‐decker SMMs on surfaces for molecular spintronic devices are presented. In this account, we discuss how dinuclear TbIII‐Pc multiple‐decker complexes can be used to elucidate the relationship between magnetic dipole interactions and SMM properties, because these complexes contain two TbPc2 units in one molecule and their intramolecular TbIII?TbIII distances can be controlled by changing the number of stacks. Next, we focus on the switching of the Kondo signal of TbIII‐Pc‐based multiple‐decker SMMs that are adsorbed onto surfaces, their characterization using STM and STS, and the relationship between the molecular structure, the electronic structure, and the Kondo resonance of TbIII‐Pc multiple‐decker complexes.

  相似文献   


7.
The 17O NMR spectrum of the non‐coordinated carboxyl oxygen in the GdIII–DOTA (DOTA=tetraazacyclododecanetetraacetic acid) complex has been observed experimentally. Its line width is essentially unaffected by paramagnetic relaxation due to gadolinium, and is only affected by the quadrupole pathway. The results are supported by the relevant parameters (hyperfine and quadrupole coupling constants) calculated by relativistic DFT methods. This finding opens up new avenues for investigating the structure and reactivity of paramagnetic GdIII complexes used as contrast agents in magnetic resonance imaging.  相似文献   

8.
Early studies suggested that FeIII complexes cannot compete with GdIII complexes as T1 MRI contrast agents. Now it is shown that one member of a class of high‐spin macrocyclic FeIII complexes produces more intense contrast in mice kidneys and liver at 30 minutes post‐injection than does a commercially used GdIII agent and also produces similar T1 relaxivity in serum phantoms at 4.7 T and 37 °C. Comparison of four different FeIII macrocyclic complexes elucidates the factors that contribute to relaxivity in vivo including solution speciation. Variable‐temperature 17O NMR studies suggest that none of the complexes has a single, integral inner‐sphere water that exchanges rapidly on the NMR timescale. MRI studies in mice show large in vivo differences of three of the FeIII complexes that correspond, in part, to their r1 relaxivity in phantoms. Changes in overall charge of the complex modulate contrast enhancement, especially of the kidneys.  相似文献   

9.
The synthesis and spectroscopic properties of a series of CF3‐labelled lanthanide(III) complexes (Ln=Gd, Tb, Dy, Ho, Er, Tm) with amide‐substituted ligands based on 1,4,7,10‐tetraazacyclododecane are described. The theoretical contributions of the 19F magnetic relaxation processes in these systems are critically assessed and selected volumetric plots are presented. These plots allow an accurate estimation of the increase in the rates of longitudinal and transverse relaxation as a function of the distance between the LnIII ion and the fluorine nucleus, the applied magnetic field, and the re‐rotational correlation time of the complex, for a given LnIII ion. Selected complexes exhibit pH‐dependent chemical shift behaviour, and a pKa of 7.0 was determined in one example based on the holmium complex of an ortho‐cyano DO3A‐monoamide ligand, which allowed the pH to be assessed by measuring the difference in chemical shift (varying by over 14 ppm) between two 19F resonances. Relaxation analyses of variable‐temperature and variable‐field 19F, 17O and 1H NMR spectroscopy experiments are reported, aided by identification of salient low‐energy conformers by using density functional theory. The study of fluorine relaxation rates, over a field range of 4.7 to 16.5 T allowed precise computation of the distance between the LnIII ion and the CF3 reporter group by using global fitting methods. The sensitivity benefits of using such paramagnetic fluorinated probes in 19F NMR spectroscopic studies are quantified in preliminary spectroscopic and imaging experiments with respect to a diamagnetic yttrium(III) analogue.  相似文献   

10.
The current trend for ultra-high-field magnetic resonance imaging (MRI) technologies opens up new routes in clinical diagnostic imaging as well as in material imaging applications. MRI selectivity is further improved by using contrast agents (CAs), which enhance the image contrast and improve specificity by the paramagnetic relaxation enhancement (PRE) mechanism. Generally, the efficacy of a CA at a given magnetic field is measured by its longitudinal and transverse relaxivities r1 and r2, i.e., the longitudinal and transverse relaxation rates T1−1 and T2−1 normalized to CA concentration. However, even though basic NMR sensitivity and resolution become better in stronger fields, r1 of classic CA generally decreases, which often causes a reduction of the image contrast. In this regard, there is a growing interest in the development of new contrast agents that would be suitable to work at higher magnetic fields. One of the strategies to increase imaging contrast at high magnetic field is to inspect other paramagnetic ions than the commonly used Gd(III)-based CAs. For lanthanides, the magnetic moment can be higher than that of the isotropic Gd(III) ion. In addition, the symmetry of electronic ground state influences the PRE properties of a compound apart from diverse correlation times. In this work, PRE of water 1H has been investigated over a wide range of magnetic fields for aqueous solutions of the lanthanide containing polyoxometalates [DyIII(H2O)4GeW11O39]5– (Dy-W11), [ErIII(H2O)3GeW11O39]5– (Er-W11) and [{ErIII(H2O)(CH3COO)(P2W17O61)}2]16− (Er2-W34) over a wide range of frequencies from 20 MHz to 1.4 GHz. Their relaxivities r1 and r2 increase with increasing applied fields. These results indicate that the three chosen POM systems are potential candidates for contrast agents, especially at high magnetic fields.  相似文献   

11.
By using paramagnetic [Fe(CN)6]3? anions in place of diamagnetic [Co(CN)6]3? anions, two field‐induced mononuclear single‐molecular magnets, [Nd(18‐crown‐6)(H2O)4][Co(CN)6] ? 2 H2O ( 1 ) and [Nd(18‐crown‐6)(H2O)4][Fe(CN)6] ? 2 H2O ( 2 ), have been synthesized and characterized. Single‐crystal X‐ray diffraction analysis revealed that compounds 1 and 2 were ionic complexes. The NdIII ions were located inside the cavities of the 18‐crown‐6 ligands and were each bound by four water molecules on either side of the crown ether. Magnetic investigations showed that these compounds were both field‐induced single‐molecular magnets. By comparing the slow relaxation behaviors of compounds 1 and 2 , we found significant differences between the direct and Raman processes for these two complexes, with a stronger direct process in compound 2 at low temperatures. Complete active space self‐consistent field (CASSCF) calculations were also performed on two [Nd(18‐crown‐6)(H2O)4]3+ fragments of compounds 1 and 2 . Ab initio calculations showed that the magnetic anisotropies of the NdIII centers in complexes 1 and 2 were similar to each other, which indicated that the difference in relaxation behavior was not owing to the magnetic anisotropy of NdIII. Our analysis showed that the magnetic interaction between the NdIII ion and the low‐spin FeIII ion in complex 2 played an important role in enhancing the direct process and suppressing the Raman process of the single‐molecular magnet.  相似文献   

12.
Nuclear spin singlet states are silent states in nuclear magnetic resonance (NMR). However, they can be probed indirectly and offer great potential for the development of contrast agents for magnetic resonance imaging (MRI). Introduced here are two novel concepts: Firstly, the bimodal NMR/fluorescence properties of 13C2‐tetraphenylethylene. It possesses a long‐lived singlet state in organic solvents, and it shortens upon the addition of water. This simultaneously increases the aggregation‐induced emission (AIE) of the molecule, resulting in a substantial enhancement of fluorescence. Secondly, introduced is a bimolecular switch for singlet states based on 3‐2H‐coumarin containing an isolated proton. Upon UV‐light exposure, a dimer forms, leading to a coupling between two previously isolated protons. A nuclear spin singlet state can now be populated. Excitation with a wavelength of 254 nm results in partial ring cleavage of the molecule back to its monomer.  相似文献   

13.
The synthesis, gas sorption studies, magnetic properties, and theoretical studies of new molecular wheels of core type {MnIII8LnIII8} (Ln=Dy, Ho, Er, Y and Yb), using the ligand mdeaH2, in the presence of ortho‐toluic or benzoic acid are reported. From the seven wheels studied the {Mn8Dy8} and {Mn8Y8} analogues exhibit SMM behavior as determined from ac susceptibility experiments in a zero static magnetic field. From DFT calculations a S=16 ground state was determined for the {Mn8Y8} complex due to weak ferromagnetic MnIII–MnIII interactions. Ab initio CASSCF+RASSI‐SO calculations on the {Mn8Dy8} wheel estimated the MnIII–DyIII exchange interaction as ?0.1 cm?1. This weak exchange along with unfavorable single‐ion anisotropy of DyIII/MnIII ions, however, led to the observation of SMM behavior with fast magnetic relaxation. The orientation of the g‐anisotropy of the DyIII ions is found to be perpendicular to the plane of the wheel and this suggests the possibility of toroidal magnetic moments in the cluster. The {Mn8Ln8} clusters reported here are the largest heterometallic MnIIILnIII wheels and the largest {3d–4f} wheels to exhibit SMM behavior reported to date.  相似文献   

14.
We report on a novel manganese(III)–porphyrin complex with the formula [MnIII(TPP)(3,5‐Me2pyNO)2]ClO4?CH3CN ( 2 ; 3,5‐Me2pyNO=3,5‐dimethylpyridine N‐oxide, H2TPP=5,10,15,20‐tetraphenylporphyrin), in which the MnIII ion is six‐coordinate with two monodentate 3,5‐Me2pyNO molecules and a tetradentate TPP ligand to build a tetragonally elongated octahedral geometry. The environment in 2 is responsible for the large and negative axial zero‐field splitting (D=?3.8 cm?1), low rhombicity (E/|D|=0.04) of the high‐spin MnIII ion, and, ultimately, for the observation of slow magnetic‐relaxation effects (Ea=15.5 cm?1 at H=1000 G) in this rare example of a manganese‐based single‐ion magnet (SIM). Structural, magnetic, and electronic characterizations were carried out by means of single‐crystal diffraction studies, variable‐temperature direct‐ and alternating‐current measurements and high‐frequency and ‐field EPR spectroscopic analysis followed by quantum‐chemical calculations. Slow magnetic‐relaxation effects were also observed in the already known analogous compound [MnIII(TPP)Cl] ( 1 ; Ea=10.5 cm?1 at H=1000 G). The results obtained for 1 and 2 are compared and discussed herein.  相似文献   

15.
The combination of the anisotropic DyIII ion and organic radicals as spin carriers results in discrete and one‐dimensional lanthanide–radical magnetic materials, namely, [Dy(hfac)3(NITThienPh)2] ( 1 ) and [Dy2(hfac)6(NITThienPh)2]n ( 2 ; hfac=hexafluoroacetylacetonate, NITThienPh=2‐(5‐phenyl‐2‐thienyl)‐4,4,5,5‐tetramethyl‐imidazoline‐1‐oxyl‐3‐oxide). Linking monomeric 1 with the DyIII ion leads to the formation of polymeric 2 , and the transformation between them is chemically controllable and reversible. The characterization of both static and dynamic magnetic properties shows that the dominant intrachain exchange interaction is important to observe magnetic bistability in 2 rather than that in 1 . Monomeric 1 exhibits paramagnetic behavior, whereas polymeric 2 shows the unusual coexistence of superparamagnetic and two‐step field‐induced metamagnetic behaviors. The antiferromagnetic ground state of 2 does not prevent the dynamic relaxation of the magnetization with the finite‐sized effect in the lanthanide–radical system. Energy barriers to thermally activated relaxation for 2 are 53 and 98 K in the low‐ and high‐temperature regimes, respectively. A hysteresis loop is observed with the coercive field of 99 Oe at 2 K.  相似文献   

16.
A new synthesis of (8‐quinolyl)‐5‐methoxysalicylaldimine (Hqsal‐5‐OMe) is reported and its crystal structure is presented. Two FeIII complexes, [Fe(qsal‐5‐OMe)2]Cl ? solvent (solvent=2 MeOH ? 0.5 H2O ( 1 ) and MeCN ? H2O ( 2 )) have been prepared and their structural, electronic and magnetic properties studied. [Fe(qsal‐5‐OMe)2] Cl ? 2 MeOH ? 0.5 H2O ( 1 ) exhibits rare crystallographically independent high‐spin and low‐spin FeIII centres at 150 K, whereas [Fe(qsal‐5‐OMe)2]Cl ? MeCN ? H2O ( 2 ) is low spin at 100 K. In both structures there are extensive π–π and C? H???π interactions. SQUID magnetometry of 2 reveals an unusual abrupt stepped‐spin crossover with T1/2=245 K and 275 K for steps 1 and 2, respectively, with a slight hysteresis of 5 K in the first step and a plateau of 15 K between the steps. In contrast, 1 is found to undergo an abrupt half‐spin crossover also with a hysteresis of 10 K. The two compounds are the first FeIII complexes of a substituted qsal ligand to exhibit abrupt spin crossover. These conclusions are supported by 57Fe Mössbauer spectroscopy. Both complexes exhibit reversible reduction to FeII at ?0.18 V and irreversible oxidation of the coordinated qsal‐5‐OMe ligand at +1.10 V.  相似文献   

17.
A potentially biocompatible class of spin‐labeled macromolecules, spin‐labeled (SL) heparins, and their use as nuclear magnetic resonance (NMR) signal enhancers are introduced. The signal enhancement is achieved through Overhauser‐type dynamic nuclear polarization (DNP). All presented SL‐heparins show high 1H DNP enhancement factors up to E=?110, which validates that effectively more than one hyperfine line can be saturated even for spin‐labeled polarizing agents. The parameters for the Overhauser‐type DNP are determined and discussed. A striking result is that for spin‐labeled heparins, the off‐resonant electron paramagnetic resonance (EPR) hyperfine lines contribute a non‐negligible part to the total saturation, even in the absence of Heisenberg spin exchange (HSE) and electron spin‐nuclear spin relaxation (T1ne). As a result, we conclude that one can optimize the use of, for example, biomacromolecules for DNP, for which only small sample amounts are available, by using heterogeneously distributed radicals attached to the molecule.  相似文献   

18.
Yb?DTMA forms a ternary complex with fluoride in aqueous solution by displacement of a bound solvent molecule from the lanthanide ion. [Yb?DTMA?F]2+ and [Yb?DTMA?OH2]3+ are in slow exchange on the relevant NMR timescale (<2000 s?1), and profound differences are observed in their respective NMR and EPR spectra of these species. The observed differences can be explained by drastic modification of the ligand field states due to the fluoride binding. This changes the magnetic anisotropy of the YbIII ground state from easy‐axis to easy‐plane type, and this change is easily detected in the observed magnetic anisotropy despite thermal population of more than just the ground state. The spectroscopic consequences of such drastic changes to the ligand field represent important new opportunities in developing fluoride‐responsive complexes and contrast agents.  相似文献   

19.
A disk‐shaped [FeIII7(Cl)(MeOH)63‐O)3(μ‐OMe)6 (PhCO2)6]Cl2 complex with C3 symmetry has been synthesised and characterised. The central tetrahedral FeIII is 0.733 Å above the almost co‐planar FeIII6 wheel, to which it is connected through three μ3‐oxide bridges. For this iron‐oxo core, the magnetic susceptibility analysis proposed a Heisenberg–Dirac–van Vleck (HDvV) mechanism that leads to an intermediate spin ground state of S=7/2 or 9/2. Within either of these ground state manifolds it is reasonable to expect spin frustration effects. The 57Fe Mössbauer (MS) analysis verifies that the central FeIII ion easily aligns its magnetic moment antiparallel to the externally applied field direction, whereas the other six peripheral FeIII ions keep their moments almost perpendicular to the field at stronger fields. This unusual canted spin structure reflects spin frustration. The small linewidths in the magnetic Mössbauer spectra of polycrystalline samples clearly suggest an isotropic exchange mechanism for realisation of this peculiar spin topology.  相似文献   

20.
Here, a new amphiphilic magnetic resonance imaging (MRI) contrast agent, a GdIII‐chelated diethylenetriaminepentaacetic acid conjugated to two branched alkyl chains via a dopamine spacer, Gd‐DTPA‐dopamine‐bisphytanyl (Gd‐DTPA‐Dop‐Phy), which is readily capable of self‐assembling into liposomal nanoassemblies upon dispersion in an aqueous solution, is reported. In vitro relaxivities of the dispersions were found to be much higher than Magnevist, a commercially available contrast agent, at 0.47 T but comparable at 9.40 T. Analysis of variable temperature 17O NMR transverse relaxation measurements revealed the water exchange of the nanoassemblies to be faster than that previously reported for paramagnetic liposomes. Molecular reorientation dynamics were probed by 1H NMRD profiles using a classical inner and outer sphere relaxation model and a Lipari–Szabo “model‐free” approach. High payloads of GdIII ions in the liposomal nanoassemblies made solely from the Gd‐DTPA‐Dop‐Phy amphiphiles, in combination with slow molecular reorientation and fast water exchange makes this novel amphiphile a suitable candidate to be investigated as an advanced MRI contrast agent.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号