首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Zinc‐based electrochemistry is attracting significant attention for practical energy storage owing to its uniqueness in terms of low cost and high safety. However, the grid‐scale application is plagued by limited output voltage and inadequate energy density when compared with more conventional Li‐ion batteries. Herein, we propose a latent high‐voltage MnO2 electrolysis process in a conventional Zn‐ion battery, and report a new electrolytic Zn–MnO2 system, via enabled proton and electron dynamics, that maximizes the electrolysis process. Compared with other Zn‐based electrochemical devices, this new electrolytic Zn–MnO2 battery has a record‐high output voltage of 1.95 V and an imposing gravimetric capacity of about 570 mAh g?1, together with a record energy density of approximately 409 Wh kg?1 when both anode and cathode active materials are taken into consideration. The cost was conservatively estimated at <US$ 10 per kWh. This result opens a new opportunity for the development of Zn‐based batteries, and should be of immediate benefit for low‐cost practical energy storage and grid‐scale applications.  相似文献   

2.
Lithium–sulfur (Li–S) battery is considered as a promising option for electrochemical energy storage applications because of its low-cost and high theoretical capacity. However, the practical application of Li–S battery is still hindered due to the poor electrical conductivity of S cathode and the high dissolution/shuttling of polysulfides in electrolyte. Herein, we report a novel physical and chemical entrapment strategy to address these two problems by designing a sulfur–MnO2@graphene (S–MnO2@GN) ternary hybrid material structure. The MnO2 particles with size of ~ 10 nm are anchored tightly on the wrinkled and twisted GN sheets to form a highly efficient sulfur host. Benefiting from the synergistic effects of GN and MnO2 in both improving the electronic conductivity and hindering polysulfides by physical and chemical adsorptions, this unique S–MnO2@GN composite exhibits excellent electrochemical performances. Reversible specific capacities of 1416, 1114, and 421 mA h g?1 are achieved at rates of 0.1, 0.2, and 3.2 C, respectively. After a 100 cycle stability test, S–MnO2@GN composite cathode could still maintain a reversible capacity of 825 mA h g?1.  相似文献   

3.
α‐MnO2 nanocrystals supported on graphene oxide (α‐MnO2/GO) was prepared through a soft chemical route and evaluated for the first time as a novel, eco‐friendly and efficient catalyst in the coupling reaction of alcohols and amines to imines. The well‐organized α‐MnO2/GO was characterized using various techniques. The results show that MnO2 nanocrystals are highly dispersed on the GO sheets and interconnected with each other, leading to large available surface area, which greatly enhances the catalytic performance of conventional MnO2. Under mild conditions, the catalyst exhibits excellent catalytic activity and selectivity with O2 serving as terminal oxidant. Various imines can be smoothly obtained in good to excellent yield. Importantly, the catalyst is easily recovered and can be reused six times with no significant loss of activity.  相似文献   

4.
Hydronium-ion batteries have received significant attention owing to the merits of extraordinary sustainability and excellent rate abilities. However, achieving high-performance hydronium-ion batteries remains a challenge due to the inferior properties of anode materials in strong acid electrolyte. Herein, a hydronium-ion battery is constructed which is based on a diquinoxalino [2,3-a:2’,3’-c] phenazine (HATN) anode and a MnO2@graphite felt cathode in a hybrid acidic electrolyte. The fast kinetics of hydronium-ion insertion/extraction into HATN electrode endows the HATN//MnO2@GF battery with enhanced electrochemical performance. This battery exhibits an excellent rate performance (266 mAh g−1 at 0.5 A g−1, 97 mAh g−1 at 50 A g−1), attractive energy density (182.1 Wh kg−1) and power density (31.2 kW kg−1), along with long-term cycle stability. These results shed light on the development of advanced hydronium-ion batteries.  相似文献   

5.
Lithium‐rich layer‐structured oxides xLi2MnO3? (1?x)LiMO2 (0<x<1, M=Mn, Ni, Co, etc.) are interesting and potential cathode materials for high energy‐density lithium ion batteries. However, the characteristic charge compensation contributed by O2? in Li2MnO3 leads to the evolution of oxygen during the initial Li+ ion extraction at high voltage and voltage fading in subsequent cycling, resulting in a safety hazard and poor cycling performance of the battery. Molybdenum substitution was performed in this work to provide another electron donor and to enhance the electrochemical activity of Li2MnO3‐based cathode materials. X‐ray diffraction and adsorption studies indicated that Mo5+ substitution expands the unit cell in the crystal lattice and weakens the Li?O and Mn?O bonds, as well as enhancing the activity of Li2MnO3 by lowering its delithiation potential and suppressing the release of oxygen. In addition, the chemical environment of O2? ions in molybdenum‐substituted Li2MnO3 is more reversible than in the unsubstituted sample during cycling. Therefore molybdenum substitution is expected to improve the performances of the Li2MnO3‐based lithium‐rich cathode materials.  相似文献   

6.
In this work, we put forward a facile yet efficient room‐temperature synthetic methodology for the smart fabrication of mesoporous nanocrystalline ZnMn2O4 in macro‐quality from the birnessite‐type MnO2 phase. A plausible reduction/ion exchange/re‐crystallization mechanism is tentatively proposed herein for the scalable synthesis of the spinel phase ZnMn2O4. When utilized as a high‐performance anode for advanced Li‐ion battery (LIB) application, the as‐synthesized nanocrystalline ZnMn2O4 delivered an excellent discharge capacity of approximately 1288 mAh g?1 on the first cycle at a current density of 400 mA g?1, and exhibited an outstanding cycling durability, rate capability, and coulombic efficiency, benefiting from its mesoporous and nanoscale structure, which strongly highlighted its great potential in next‐generation LIBs. Furthermore, the strategy developed here is very simple and of great importance for large‐scale industrial production.  相似文献   

7.
Potassium-ion battery is rich in resources and cheap in price, in the era of lithium-ion battery commercialization, potassium-ion battery is the most likely to replace it. Based on the classification and summary of electrode materials for potassium-ion batteries, this paper focuses on the introduction of manganese-based oxide KxMnO2. The layered KxMnO2 has a large layer spacing and can be embedded with large size potassium-ions. This paper focuses on the preparation and doping of manganese-based cathode materials for potassium-ion batteries, summarizes the main challenges of KxMnO2-based cathode materials in the current stage of research and further looks into its future development direction.  相似文献   

8.
Nitrogen‐doped porous carbon nanotubes@MnO2 (N‐CNTs@MnO2) nanocomposites are prepared through the in situ growth of MnO2 nanosheets on N‐CNTs derived from polypyrrole nanotubes (PNTs). Benefiting from the synergistic effects between N‐CNTs (high conductivity and N doping level) and MnO2 nanosheets (high theoretical capacity), the as‐prepared N‐CNTs@MnO2‐800 nanocomposites show a specific capacitance of 219 F g?1 at a current density of 1.0 A g?1, which is higher than that of pure MnO2 nanosheets (128 F g?1) and PNTs (42 F g?1) in 0.5 m Na2SO4 solution. Meanwhile, the capacitance retention of 86.8 % (after 1000 cycles at 10 A g?1) indicates an excellent electrochemical performance of N‐CNTs@MnO2 prepared in this work.  相似文献   

9.
A nanostructured manganese dioxide electrode material was prepared using a solid‐reaction route starting with MnCl2·4H2O and NH4HCO3, and its electrochemical performance as a positive electrode for MnO2/activated carbon hybrid supercapacitor with 1 mol·L?1 LiOH electrolyte was reported. The material was proved to be a mixture of nanostructured γ‐MnO2 and α‐MnO2 containing some bound water in the structure, which was characterized by X‐ray diffraction analysis, infrared spectrum analysis, and transmission electron microscope observation. Electrochemical properties of the MnO2 electrode and the MnO2/AC capacitor were investigated by cyclic voltammetry, ac impedance and galvanostatic charge/discharge methods. Experimental results showed that the MnO2 electrode exhibited faradaic pseudocapacitance behavior and higher specific capacitance in 1 mol·L?1 LiOH electrolyte. The MnO2/AC hybrid capacitor with 1 mol·L?1 LiOH electrolyte presented excellent rate charge/discharge ability and cyclic stability.  相似文献   

10.
MnO2/graphene nanocomposites with different morphologies were synthesized and the petal‐shaped nanosheet MnO2/graphene composite was developed as an electrode material for nonenzymatic hydrogen peroxide (H2O2) sensor. The morphology, structure, composition, and hydrophilicity of the resulting products were characterized by scanning electron microscopy (SEM), X‐ray diffraction (XRD), thermogravimetric analysis (TGA), and the contact angle tests. In addition, the fabricated MnO2/graphene composites could be used as catalysts for the electrochemical oxidation of H2O2. Cyclic voltammogram (CV) experiments indicated that MnO2/graphene‐modified electrode showed good electrocatalytic activity towards both the oxidation and reduction of H2O2 in a neutral environment. Amperometric response results illustrated that this nonenzymatic sensor had excellent anti‐interference ability and displayed two linear ranges from 10 to 90 µM and from 0.2 to 0.9 mM with a detection limit of 2 µM.  相似文献   

11.
New determination scheme of p‐aminophenol by using MnO2 as a preoxidant is demonstrated in this work. In the flow injection system, the p‐aminophenol is oxidized to quinoneimine by MnO2 at up‐stream, which can be detected at a suitable reductive potential. After optimization, the linear range of PAP is started from 1 μM to 30 μM (R2=0.999), the estimated detection limit (S/N=3) is 0.28 μM. Two real samples are studied and excellent recoveries are achieved by using standard addition method.  相似文献   

12.
《化学:亚洲杂志》2017,12(24):3128-3134
Lithium‐sulfur (Li‐S) batteries have recently attracted a large amount of attention as promising candidates for next‐generation high‐power energy storage devices because of their high theoretical capacity and energy density. However, the shuttle effect of polysulfides and poor conductivity of sulfur are still vital issues that constrain their specific capacity and cyclic stability. Here, we design coaxial MnO2‐graphitic carbon hollow nanofibers as sulfur hosts for high‐performance lithium‐sulfur batteries. The hollow C/MnO2 coaxial nanofibers are synthesized via electrospinning and carbonization of the carbon nanofibers (CNFs), followed by an in situ redox reaction to grow MnO2 nanosheets on the surface of CNFs. The inner graphitic carbon layer not only maintains intimate contact with sulfur and outer MnO2 shell to significantly increase the overall electrical conductivity but also acts as a protective layer to prevent dissolution of polysulfides. The outer MnO2 nanosheets restrain the shuttle effect greatly through chemisorption and redox reaction. Therefore, the robust S@C/MnO2 nanofiber cathode delivers an extraordinary rate capability and excellent cycling stability with a capacity decay rate of 0.044 and 0.051 % per cycle after 1000 cycles at 1.0 C and 2.0 C, respectively. Our present work brings forward a new facile and efficient strategy for the functionalization of inorganic metal oxide on graphitic carbons as sulfur hosts for high performance Li‐S batteries.  相似文献   

13.
Rechargeable lithium batteries that use non-aqueous electrolytes may not be suitable for electric vehicle applications, which require safe, inexpensive, and high energy density. In this paper, we showed that reversible lithium intercalation can occur in MnO2 cathode coupled with Zn anode while using LiOH aqueous electrolyte. This new Zn|LiOH|MnO2 aqueous rechargeable cell could operate around 1.5 V for multiple cycles and possibly be used in battery packs, are of low cost, and environmentally benign. However, higher energy density, power density, and cycling life of the Zn|LiOH|MnO2 system are required for exploiting this technology to better compete with the lithium battery counterparts. Serendipitously, high energy density (270 Wh/Kg) that was achieved with physically mixed additives (Bi2O3 and TiB2) on MnO2 is reported. Physically modified cathode containing multiple additives is shown to be superior in energy density and capacity retention compared to that of the additive-free MnO2 or carbon-coated MnO2 using polyvinylpyrrolidone as the source. The role of the additives (Bi2O3 and Bi2O3?+?TiB2) in the MnO2 electrode is found to avoid the formation of unwanted (non-rechargeable) products and to decrease the polarization of the electrode.  相似文献   

14.
To realize a reversible solid‐state MnIII/IV redox couple in layered oxides, co‐operative Jahn–Teller distortion (CJTD) of six‐coordinate MnIII (t2g3–eg1) is a key factor in terms of structural and physical properties. We develop a single‐phase synthesis route for two polymorphs, namely distorted and undistorted P2‐type Na2/3MnO2 having different Mn stoichiometry, and investigate how the structural and stoichiometric difference influences electrochemical reaction. The distorted Na2/3MnO2 delivers 216 mAh g?1 as a 3 V class positive electrode, reaching 590 Wh (kg oxide)?1 with excellent cycle stability in a non‐aqueous Na cell and demonstrates better electrochemical behavior compared to undistorted Na2/3MnO2. Furthermore, reversible phase transitions correlated with CJTD are found upon (de)sodiation for distorted Na2/3MnO2, providing a new insight into utilization of the MnIII/IV redox couple for positive electrodes of Na‐ion batteries.  相似文献   

15.
For the first time, nanostructured manganese dioxide was successfully electrodeposited onto an ITO (indium tin oxide) glass substrate by cyclic voltammetry (CV) method from an aqueous solution of 0.1 M Na2SO4 containing 5 × 10−3 M MnSO4. The obtained manganese dioxide‐modified ITO glass substrates were characterized by energy dispersive spectrometry (EDS), Fourier transform infrared spectrometry (FTIR) and scanning electron microscopy (SEM), respectively. All results not only proved the existence of MnO2 on an ITO glass substrate but also demonstrated that the morphology of the obtained MnO2 was greatly affected by the electrodeposition conditions. Also, this MnO2‐modified ITO electrode was systematically investigated by cyclic voltammetry (CV), chronopotentiometry and electrochemical impedance spectroscopy (EIS) in an aqueous electrolyte of 0.1 M Na2SO4. The results obtained from electrochemical measurement indicated that this developed MnO2‐modified ITO electrode has a satisfied specific capacitance value of 264 F·g−1 and exhibits excellent electrochemical stability and reversibility.  相似文献   

16.
A novel g‐C3N4/MnO2 composite was prepared by in situ deposition of MnO2 on graphitic carbon nitride (g‐C3N4) nanosheets, and its adsorption properties were evaluated for removal of Pb (II) in aqueous. Fourier transform‐infrared, spectrometer scanning electron microscopy and transmission electron microscopy characterization showed the g‐C3N4/MnO2 composite had a two‐dimensional/two‐dimensional (2D/2D) structure with ample active sites. The Brunauer–Emmett–Teller specific surface area of g‐C3N4/MnO2 composites (234.9 m2/g) was 13.5 times larger than that of g‐C3N4 (17.37 m2/g), providing better conditions for adsorption. The adsorption kinetic data were better fitted with the pseudo‐second‐order model. The Langmuir model was more suitable for describing the experimental equilibrium data of g‐C3N4/MnO2, and the maximum adsorption capacity was 204.1 mg/g for Pb (II). The adsorption of g‐C3N4/MnO2 composite for Pb (II) was an endothermic and spontaneous process, and reached adsorption equilibrium rapidly within initial 150 min. This composite was an excellent adsorbent because of its higher adsorption capacity and facile preparation progress.  相似文献   

17.
Manganese dioxide (MnO2) appears to be an effective cathode material for a battery system. No studies on lithium insertion in aqueous media are known to the best of our knowledge. However, in one of our previous papers we reported that lithium could be intercalated into a MnO2 host compound using an aqueous LiOH electrolyte; however simple chemistry suggests that it should not. It is found that a battery with LiOH electrolyte functions quite differently from the cell that uses Li2SO4. This paper describes the surface modifications that accompany the electrochemical behavior of MnO2 during redox (discharge) processes in the lithium hydroxide and sulfate media. XPS and SIMS techniques were used to study the resultant surface of the MnO2 cathode and the spectra reveal that the formation of an insoluble layer of Li2CO3 precedes the process of reduction. SEM was used to study the microstructure of the MnO2 cathode. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

18.
《中国化学快报》2023,34(8):107885
Aqueous zinc ion batteries (AZIBs) have attracted much attention in recent years due to their high safety, low cost, and decent electrochemical performance. However, the traditional electrodes development process requires tedious synthesis and testing procedures, which reduces the efficiency of developing high-performance battery devices. Here, we proposed a high-throughput screening strategy based on first-principles calculations to aid the experimental development of high-performance spinel cathode materials for AZIBs. We obtained 14 spinel materials from 12,047 Mn/Zn-O based materials by examining their structures and whether they satisfy the basic properties of electrodes. Then their band structures and density of states, open circuit voltage and volume expansion rate, ionic diffusion coefficient and energy barrier were further evaluated by first-principles calculations, resulting in five potential candidates. One of the promising candidates identified, Mg2MnO4, was experimentally synthesized, characterized and integrated into an AZIB based cell to verify its performance as a cathode. The Mg2MnO4 cathode exhibits excellent cycling stability, which is consistent with the theoretically predicted low volume expansion. Moreover, at high current density, the Mg2MnO4 cathode still exhibits high reversible capacity and excellent rate performance, indicating that it is an excellent cathode material for AZIBs. Our work provides a new approach to accelerate the development of high-performance cathodes for AZIBs and other ion batteries.  相似文献   

19.
Although about 200,000 metric tons of γ‐MnO2 are used annually worldwide for industrial applications, the γ‐MnO2 structure is still known to possess a highly ambiguous crystal lattice. To better understand the γ‐MnO2 atomic structure, hexagon‐based nanoarchitectures were successfully synthesized and used to elucidate its internal structure for the present work. The structural analysis results, obtained from the hexagon‐based nanoarchitectures, clearly show the coexistence of akhtenskite (ε‐MnO2), pyrolusite (β‐MnO2), and ramsdellite in the so‐called γ‐MnO2 phase and verified the heterogeneous phase assembly of the γ‐MnO2 state, which violates the well‐known “De Wolff” model and derivative models, but partially accords with Heuer's results. Furthermore, heterogeneous γ‐MnO2 assembly was found to be a metastable structure under hydrothermal conditions, and the individual components of the heterogeneous γ‐MnO2 system have structural similarities and a high lattice matches with pyrolusite (β‐MnO2). The as‐obtained γ‐MnO2 nanoarchitectures are nontoxic and environmentally friendly, and the application of such nanoarchitectures as support matrices successfully mitigates the common problems for phase‐change materials of inorganic salts, such as phase separation and supercooling‐effects, thereby showing prospect in energy‐saving applications in future “smart‐house” systems.  相似文献   

20.
MnO2 nanoclusters were synthesized by a low temperature hydrothermal method. In the presented procedure, MnO2 was precipitated by oxidation of manganese sulfate solution upon addition of ammonium persulfate solution. The synthesized sample was characterized by SEM and XRD. Optimized nanoclusters with needle diameters of 30 nm were synthesized by mixing of manganese sulfate solution (0.8 M) with ammonium persulfate solution (0.7 M) in sulfuric acid media (0.8 M) at constant temperature of 80 °C. Effect of solid state lithium sulfate treatment on the phase composition, particle size and morphology of the obtained MnO2 nanoclusters was studied at different temperatures. The obtained results showed that lithium salt can changes MnO2 nanoclusters morphology without any intercalation. Discharge capacity and cycle life of the synthesized MnO2 nanoclusters as positive materials of RAM battery (Zn–MnO2 battery), before and after treatment with lithium sulfate were studied. MnO2 nanopowder showed average discharge capacity of 190 mA.h/g (with respect to MnO2 weight) during 3 first discharges. Lithium sulfate-treated powder showed higher discharge capacity (160 mA.h/g) and shorter cycle life than the untreated powder.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号