首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Volvox‐like CdxZn1?xS solid solutions with a cubic zinc blend structure were synthesized through a template‐free ethylene glycol process. Cd(Ac)2 ? 2 H2O, Zn(Ac)2 ? 2 H2O, and thiourea are used as the starting materials and dissolved in ethylene glycol. These reaction precursors and solvent not only contributed to control over the formation of the volvox‐like spherical geometry, but also exerted vigorous domination for existence of cubic‐phase CdxZn1?xS nanostructures. As‐prepared volvox‐like CdxZn1?xS nanospheres have a diameter of around 100 nm with extensional shells. These samples show excellent photocatalytic H2 evolution activity from water splitting under visible‐light irradiation without any cocatalyst or scaffolding, owing to their tunable band gap, cubic zinc blend structure, and unique hierarchical porous structure with a high surface area (as high as 95.2 m2 g?1).  相似文献   

2.
Ce1‐xNdxO2‐δ (x = 0.05–0.55) solid solutions prepared by sol‐gel route were crystallized in a cubic fluorite structure. The solid limit was determined to be as high as x = 0.45. Raman spectra of the solid solutions with lower composition exhibited only one band, which was assigned to F2g mode. Increasing composition produced broad and asymmetric F2g mode with an appearance of low frequency tail. The new broad peak observed at higher frequency side of the F2g mode associated with the oxygen vacancy in the lattice. The impedance spectra of the solid solutions showed definitely ionic conduction, and Ce0.80Nd0.20O2‐δ solid solution possessed a maximum conductivity. At 500 °C, the conductivity and activation energy were 2.65 × 10?3S/cm and 0.82 eV, respectively.  相似文献   

3.
Mn4+‐doped fluoride phosphors have been widely used in wide‐gamut backlighting devices because of their extremely narrow emission band. Solid solutions of Na2(SixGe1?x)F6:Mn4+ and Na2(GeyTi1?y)F6:Mn4+ were successfully synthesized to elucidate the behavior of the zero‐phonon line (ZPL) in different structures. The ratio between ZPL and the highest emission intensity υ6 phonon sideband exhibits a strong relationship with luminescent decay rate. First‐principles calculations are conducted to model the variation in the structural and electronic properties of the prepared solid solutions as a function of the composition. To compensate for the limitations of the Rietveld refinement, electron paramagnetic resonance and high‐resolution steady‐state emission spectra are used to confirm the diverse local environment for Mn4+ in the structure. Finally, the spectral luminous efficacy of radiation (LER) is used to reveal the important role of ZPL in practical applications.  相似文献   

4.
Nanoscale iron‐doped zirconia solid‐solution aerogels are prepared via a simple ethanol thermal route using zirconyl nitrate and iron nitrate as starting materials, followed by a supercritical fluid drying process. Structural characteristics are investigated by means of powder X‐ray diffraction (XRD), thermal analyses (TG/DTA), N2 adsorption measurements and diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS). The results show that the resulting iron‐doped solid solutions are metastable tetragonal zirconia which exhibit excellent dispersibility and high solubility of iron oxide. Further, when the Fe:(Fe+Zr) ratio x is lower than 0.10, all of the Fe3+ ions can be incorporated into ZrO2 by substituting Zr4+ to form Zr1?xFexOy solid solutions. Moreover, for the first time, an additional hydroxyl group band that is not present in pure ZrO2 is observed by DRIFTS for the Zr(Fe)O2 solid solution. This is direct evidence of Fe3+ ions incorporated into ZrO2. These Zr1?xFexOy solid solutions are excellent catalysts for the solvent‐free aerobic oxidation of n‐hexadecane using air as the oxidant under ambient conditions. The Zr0.8Fe0.2Oy solid‐solution catalyst demonstrates the best catalytic properties, with the conversion of n‐hexadecane reaching 36.2 % with 48 % selectivity for ketones and 24 % selectivity for alcohols and it can be recycled five times without significant loss of activity.  相似文献   

5.
The structural and electronic properties of BxAl1−x N solid solutions (x = 0.25, 0.5, 0.75) were examined by calculating the electronic energy structure by the local coherent potential method within the framework of multiple scattering theory. The charge is transferred from aluminum to nitrogen atoms and increases with the content of boron atoms. The concentration dependences of the structural and electronic properties of these solutions are discussed. __________ Translated from Zhurnal Strukturnoi Khimii, Vol. 46, No. 5, pp. 822–829, September–October, 2005.  相似文献   

6.
《Chemphyschem》2003,4(11):1203-1210
The synthesis and magneto‐optical properties of HgTe nanocrystals capped with HgxCd1?xTe(S) alloyed shells have been investigated. The magneto‐optical measurements included the use of optically detected magnetic resonance (ODMR) and circular polarized photoluminescence (CP‐PL) spectroscopy. The PL spectra suggest the existence of luminescence events from both the core HgTe and the HgxCd1?xTe(S) shells. The continuous‐wave (cw) and time‐resolved ODMR measurements revealed that the luminescence at the shell regime is associated with a trap‐to‐band recombination emission. The electron trap is comprised of a Cd–Hg mixed site, confirming the existence of an alloyed HgxCd1?xTe(S) composition. The ODMR data and the CP‐PL measurements together revealed the g‐values of the trapped electron and the valence band hole.  相似文献   

7.
We report a systematic investigation on the structural and electronic effects of carbon‐supported PtxPd1?x bimetallic nanoparticles on the oxygen reduction reaction (ORR) and methanol oxidation reaction (MOR) in acid electrolyte. PtxPd1?x/C nanocatalysts with various Pt/Pd atomic ratios (x=0.25, 0.5, and 0.75) were synthesized by using a borohydride‐reduction method. Rotating‐disk electrode measurements revealed that the Pt3Pd1/C nanocatalyst has a synergistic effect on the ORR, showing 50 % enhancement, and an antagonistic effect on the MOR, showing 90 % reduction, relative to JM 20 Pt/C on a mass basis. The extent of alloying and Pt d‐band vacancies of the PtxPd1?x/C nanocatalysts were explored by extended X‐ray absorption fine‐structure spectroscopy (EXAFS) and X‐ray absorption near‐edge structure spectroscopy (XANES). The structure–activity relationship indicates that ORR activity and methanol tolerance of the nanocatalysts strongly depend on their extent of alloying and d‐band vacancies. The optimal composition for enhanced ORR activity is Pt3Pd1/C, with high extent of alloying and low Pt d‐band vacancies, owing to favorable O? O scission and inhibited formation of oxygenated intermediates. MOR activity also shows structure dependence. For example, Pt1Pd3/C with Ptrich?corePdrich?shell structure possesses lower MOR activity than the Pt3Pd1/C nanocatalyst with random alloy structure. Herein, extent of alloying and d‐band vacancies reveal new insights into the synergistic and antagonistic effects of the PtxPd1?x/C nanocatalysts on surface reactivity.  相似文献   

8.
Composition‐adjustable spinel‐type metal oxides, MnxCo3?xO4?δ (x=0.8–1.4), were synthesized in ethanol solutions by a rapid inorganic self‐templating mechanism using KCl nanocrystals as the structure‐directing agent. The MnxCo3?xO4?δ materials showed ultrahigh oxygen evolution activity and strong durability in alkaline solutions, and are capable of delivering a current density of 10 mA cm?2 at 1.58 V versus the reversible hydrogen electrode in 0.1 M KOH solution, which is superior in comparison to IrO2 catalysts under identical experimental conditions, and comparable to the most active noble‐metal and transition‐metal oxygen evolution electrocatalysts reported so far. The high performance for catalytic oxygen evolution originates from both compositional and structural features of the synthesized materials. The moderate content of Mn doping into the spinel framework led to their improved electronic conductivity and strong oxidizing ability, and the well‐developed porosity, accompanied with the high affinity between OH? reactants and catalyst surface, contributed to the smooth mass transport, thus endowing them with superior oxygen evolution activity.  相似文献   

9.
The synthesis and structure of atomically precise Au130?xAgx (average x=98) alloy nanoclusters protected by 55 ligands of 4‐tert‐butylbenzenethiolate are reported. This large alloy structure has a decahedral M54 (M=Au/Ag) core. The Au atoms are localized in the truncated Marks decahedron. In the core, a drum of Ag‐rich sites is found, which is enclosed by a Marks decahedral cage of Au‐rich sites. The surface is exclusively Ag?SR; X‐ray absorption fine structure analysis supports the absence of Au?S bonds. The optical absorption spectrum shows a strong peak at 523 nm, seemingly a plasmon peak, but fs spectroscopic analysis indicates its non‐plasmon nature. The non‐metallicity of the Au130?xAgx nanocluster has set up a benchmark to study the transition to metallic state in the size evolution of bimetallic nanoclusters. The localized Au/Ag binary architecture in such a large alloy nanocluster provides atomic‐level insights into the Au?Ag bonds in bimetallic nanoclusters.  相似文献   

10.
A theoretical study of structural and electronic properties of cis‐1,3,4,6‐tetranitrooctahydroimidazo‐[4,5‐d]imidazole (BCHMX) crystal is performed using density functional theory. The band structure, the total density of states, the atomic orbit projected density of states (PDOS) of C, N, O, and H, and Mulliken population analysis are discussed. The study by analyzing the PDOS shows that the structure of BCHMX crystal possesses C? H···O intra‐ and intermolecular hydrogen bonding. There are hydrogen bonds between H3‐1s and O5‐2p orbits, H2‐1s and O6‐2p orbits of intramolecules and between H2‐1s and O1‐2p orbits of intermolecules. The reasons for the smaller impact sensitivity compared with β‐1,3,5,7‐tetranitro‐1,3,5,7‐tetrazocane and 1,3,5‐trinitro‐1,3,5‐triazinane are also explored from the band gap in the crystal and the weakest bond dissociation energy in single molecule. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

11.
1,3‐Dichloro‐2‐nitro‐2‐azapropane is an excellent precursor to dense energetic functionalized dipyrazolyl‐N‐nitromethanamines. This new family of energetic compounds was fully characterized by using 1H, 13C, and 15N NMR and IR spectroscopy, differential scanning calorimetry, elemental analysis, and impact sensitivity tests. Additionally, single‐crystal X‐ray structuring was done for 3 and 5? CH3CN, which gave insight into structural characteristics. The experimentally determined densities of 2 – 9 fall between 1.69 and 1.90 g cm?3. Heats of formation and detonation properties were calculated by using Gaussian 03 and EXPLO5 programs, respectively. The influence of different energetic moieties on the structural and energetic properties was established theoretically.  相似文献   

12.
The preparation of exquisite hierarchical worm‐like Co1?xS (x=0.75) microtubes by a one‐pot complex–surfactant‐assisted hydrothermal method is successfully achieved for the first time. The hierarchical structures of the microtube wall are assembled from numerous interleaving hexagonal nanoplates. X‐ray diffraction, X‐ray photoelectron spectroscopy, scanning electron microscopy, transmission electron microscopy, and high‐resolution transmission electron microscopy were used to characterize the samples. The experimental results indicate that the “soft template” surfactant cetyltrimethylammonium bromide and the chelating ethylenediamine both play important roles for the formation of hierarchical Co1?xS microtubes. A possible formation mechanism for the growth processes is proposed. Additionally, the electrochemical and magnetic properties of Co1?xS microtubes were systematically studied.  相似文献   

13.
Bimetallic nanomaterials are of major importance in catalysis. A Au‐Cu bimetallic nanocluster was synthesized that is effective in catalyzing the epoxide ring‐opening reaction. The catalyst was analyzed by SCXRD and ESI‐MS and found to be Au24Cu6(SPhtBu)22 (Au24Cu6 for short). Six copper atoms exclusively occupy the surface positions in two groups with three atoms for each, and each group was bonded with three thiolate ligands to give a planar motif reminiscent of a benzene ring. In the epoxide‐ring opening reaction, Au24Cu6 exhibited superior catalytic activity compared to other homometallic and Au‐Cu alloy NCs, such as Au25 and Au38?xCux. Control experiments and DFT calculations revealed that the π conjugation among the Cu?S bonds played a pivotal role. This study demonstrates a unique π conjugation established among the Cu?S bonds as a critical structural motif in the nanocluster, which facilitates the catalysis of a ring‐opening reaction.  相似文献   

14.
Despite a significant advancement in preparing metastable materials, one common problem is the strict and precious reaction conditions due to their metastable structures. Herein, we achieved the preparation of high‐temperature stabilized metastable α‐MoC1?x by mounting zinc atoms into its lattice structure. Such a structural construction could suppress the phase transformation from α‐MoC1?x to β‐Mo2C through restricting the displacement of Mo atoms upon increased temperature. The resultant metastable α‐MoC1?x can be stabilized up to 1000 °C and this stability temperature is the highest for the metastable α‐MoC1?x so far. Synchrotron X‐ray absorption spectroscopy (XAS) and X‐ray photoelectron spectroscopy (XPS) confirm the structure of Zn‐mounted α‐MoC1?x. Density functional theory (DFT) calculations reveal that the introduction of the Zn atoms in the lattice structure of α‐MoC1?x could significantly decrease the energy difference (ΔE) between α‐MoC1?x and β‐Mo2C, thus effectively suppressing the phase transformation from α‐MoC1?x to β‐Mo2C and accordingly maintaining the high‐temperature stability of α‐MoC1?x. This novel strategy can be used as a universal method to be extended to synthesize metastable α‐MoC1?x from different precursors or other mounted elements. Moreover, the optimal product exhibits excellent lithium storage performances in terms of the cycling stability and rate performance.  相似文献   

15.
Composition engineering is an important approach for modulating the physical properties of alloyed semiconductors. In this work, ternary CuSxSe1?x nanoplates over the entire composition range of 0≤x≤1 have been controllably synthesized by means of a simple aqueous solution method at low temperature (90 °C). Reaction of Cu2+ cations with polysulfide/‐selenide ((SnSem)2?) anions rather than independent Sn2? and Sem2? anions is responsible for the low‐temperature and rapid synthesis of CuSxSe1?x alloys, and leads to higher S/Se ratios in the alloys than that in reactants owing to different dissociation energies of the Se?Se and the S?S bonds. The lattice parameters ‘a’ and ‘c’ of the hexagonal CuSxSe1?x alloys decrease linearly, whereas the direct bandgaps increase quadratically along with the S content. Direct bandgaps of the alloys can be tuned over a wide range from 1.64 to 2.19 eV. Raman peaks of the S?Se stretching mode are observed, thus further confirming formation of the alloyed CuSxSe1?x phase.  相似文献   

16.
Two novel, stable PdII complexes, compounds 3 and 4 , of two 3‐hydroxypyridine‐2‐carbaldehyde thiosemicarbazones, 1 and 2 , resp., were prepared from Li2PdCl4. The single‐crystal X‐ray structure of complex 3 (= [Pd( 2 )Cl]) shows that the ligand monoanion coordinates in a planar conformation to the metal via the pyridyl N‐, the imine N‐, and the thiolato S‐atoms. Intermolecular H‐bonds, π–π, and CH ? ? ? π interactions lead to a two‐dimensional supramolecular assembly. The electronic, IR, UV/VIS, and NMR spectroscopic data of the two complexes are reported, together with their electrochemical properties. A sophisticated experimental procedure was used to determine the multiple dissociation constants of the ligands 1 and 2 by UV/VIS titration.  相似文献   

17.
The structural and electronic properties of MnB4 were studied by high‐temperature powder X‐ray diffraction and measurements of the conductivity and Seebeck coefficient on spark‐plasma‐sintered samples. A transition from the room‐temperature monoclinic structure (space group P21/c) to a high‐temperature orthorhombic structure (space group Pnnm) was observed at about 650 K. The material remained semiconducting after the transition, but its behavior changed from p‐type to n‐type. 55Mn NMR measurements revealed an isotropic chemical shift of ?1315 ppm, confirming an oxidation state of Mn close to I. Solid solutions of Cr1?xMnxB4 (two phases in space groups Pnnm and P21/c) were synthesized for the first time. In addition, nanoindentation studies yielded values of (496±26) and (25.3±1.7) GPa for the Young’s modulus and hardness, respectively, compared to values of 530 and 37 GPa obtained by DFT calculations.  相似文献   

18.
In this study, the results of structural parameters, electronic structure, and thermodynamic properties of the ZrxY1–xN solid solutions are presented. The effect of zirconium composition on lattice constant, and bulk modulus shows nonlinear dependence on concentration. Deviations of the lattice constant from Vegard's law and deviations of the bulk modulus from linear concentration dependence were found. Our findings indicate that the ZrxY1–xN solid solutions are metallic for x = 0.25, 0.5, 0.75. The calculated excess mixing enthalpy is positive over the entire zirconium composition range. The positive mixing enthalpies for ZrxY1–xN alloys indicate the existence of miscibility gaps and spinodal decompositions. The effect of temperature on the volume, bulk modulus, Debye temperature, and the heat capacity for ZrxY1–xN alloys were analyzed using the quasi‐harmonic Debye model. Results show that the heat capacity is slightly sensitive to composition as temperature increases. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
The first solid‐state structures of ortho‐sulfonated monoazo dyestuffs are reported and compared to those of their para‐ and meta‐sulfonated analogues. The structures of the 16 Na, K, Cs, Mg, Ca, Sr, and Ba ortho‐sulfonated salts are found to have fewer M? O3S bonds than their isomeric equivalents and this in turn means that the metal type is no longer the prime indicator of which structural type will be adopted. M? O3S bonds are replaced by M? OH2, M? HOR and M–π interactions, apparently for steric reasons. As well as new bonding motifs, the changed dye shape also leads to new packing motifs. The simple organic/inorganic layering ubiquitous to the para‐ and meta‐sulfonated dye salt structures is replaced by variations (organic bilayers, inorganic channels), each of which correlates with a different degree of molecular planarity in the sulfonated azo dye anion.  相似文献   

20.
Platinum dichalcogenides have been known to exhibit two‐dimensional layered structures. Herein, we describe the syntheses, isolation, and characterization of air‐stable crystalline cyclic alkyl(amino) carbene (cAAC)‐supported monomeric platinum disulfide three‐membered ring complex [(cAAC)2Pt(S2)] ( 2 ). The highly reactive platinum(0) [(cAAC)2Pt] complex ( 1 ) with two‐coordinate platinum activates elemental sulfur to give 2 . The brown crystals of bis‐carbene platinum(II)monosulfate [(cAAC)2Pt(SO4)x(S2)1?x] ( 4 ) have been isolated when the reaction was performed in air. The dioxygen analogue of 2 was formed upon exposing the THF solution of 1 to aerial oxygen (O2). The binding of oxygen at the Pt0 center was found to be reversible. Additionally, DFT study has been performed to elucidate the electronic structure and bonding scenario of 2 , 3 , and 4 . Quantum chemical calculations showed donor–acceptor‐type interaction for the Pt?S bonds in 2 and Pt?O bonds in 3 and 4 .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号