首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Homolytic N? Br bond dissociation constitutes the initial step of numerous reactions involving N‐brominated species. However, little is known about the strength of N? Br bonds toward homolytic cleavage. We herein report accurate bond dissociation energies (BDEs) for a set of 18 molecules using the high‐level W2 thermochemical protocol. The BDEs (at 298 K) of the species in this set range from 162.2 kJ mol?1 (N‐bromopyrrole) to 260.6 kJ mol?1 ((CHO)2NBr). In order to compute BDEs of larger systems, for which W2 theory is not applicable, we have benchmarked a wide range of more economical theoretical procedures. Of these, G3‐B3 offers the best performance (root‐mean‐square deviations = 2.9 kJ mol?1), and using this method, we have computed N? Br BDEs for four widely used N‐brominated compounds. These include (BDEs are given in parentheses): N‐bromosuccinimide (281.6), N‐bromoglutarimide (263.2), N‐bromophthalimide (274.7), and 1,3‐dibromo‐5,5‐dimethylhydantoin (218.2 and 264.8 kJ mol?1). © 2015 Wiley Periodicals, Inc.  相似文献   

2.
The [C4H6O] ion of structure [CH2?CHCH?CHOH] (a) is generated by loss of C4H8 from ionized 6,6-dimethyl-2-cyclohexen-1-ol. The heat of formation ΔHf of [CH2?CHCH?CHOH] was estimated to be 736 kJ mol?1. The isomeric ion [CH2?C(OH)CH?CH2] (b) was shown to have ΔHf, ? 761 kJ mol?1, 54 kJ mol?1 less than that of its keto analogue [CH3COCH?CH2]. Ion [CH2?C(OH)CH?CH2] may be generated by loss of C2H4 from ionized hex-1-en-3-one or by loss of C4H8 from ionized 4,4-dimethyl-2-cyclohexen-1-ol. The [C4H6O] ion generated by loss of C2H4 from ionized 2-cyclohexen-1-ol was shown to consist of a mixture of the above enol ions by comparing the metastable ion and collisional activation mass spectra of [CH2?CHCH?CHOH] and [CH2?C(OH)CH?CH2] ions with that of the above daughter ion. It is further concluded that prior to their major fragmentations by loss of CH3˙ and CO, [CH2?CHCH?CHOH]+˙ and [CH2?C(OH)CH?CH2] do not rearrange to their keto counterparts. The metastable ion and collisional activation characteristics of the isomeric allenic [C4H6O] ion [CH2?C?CHCH2OH] are also reported.  相似文献   

3.
The distonic ions HO+?CHCH2C˙H2 (1) and CH3C(?O+H)CH2C˙H2 (2) were directly generated, their decompositions characterized and their appearance energies determined by photoionization. Heats of formation derived from the appearance energies were 757 kJ mol?1 for 1 and 692 kJ mol?1 for 2. Deuterium labeling demonstrates that both ions decompose at low energies in the same ways as their isomers with the same skeletal structures, consistent with proposals that 1 and 2 are intermediates in the decompositions of those systems. Surprisingly, the values of the translational energy releases accompanying the formation of CH3CO+ and C2H5CO+ from 2 appear to be inversely proportional to the available excess energy. The 1,2-H-shift RC(?O+H)CH2C˙H2 → RC(?O+H)C˙HCH3 is compared to the corresponding, non-occurring 1,2-H-shift in alkyl free radicals.  相似文献   

4.
New polymeric solid electrolyte films, consisting of crosslinked poly(N-vinylpyrrolidone) (PVPD) as matrix, and surfactant, sodium deoxycholate (NaDC), lithium deoxycholate (LiDC), sodium laulylsulfate (R12OSO3Na), or sodium palmitate (R15COONa) as electrolyte salt, are prepared; their basic structure and conductivity dependence on temperature are reported. The structure of the electrolytes is amorphous. Their conductivity is 3.1 × 10?5 S cm?1 (containing NaDC), 8.42 × 10?6 S cm?1 (LiDC), 2.18 × 10?4 S cm?1 (R12OSO3Na), and 7.27 × 10?5 S cm?1 (R15COONa) at 20°C. Their temperature dependence of the conductivity is similar to that of liquid electrolyte rather than that of usual polymeric solid electrolyte, i.e., the WLF-type dependence. The values of activation energy of conductivity (Ea) were PVPD, 25.5 kJ mol?1; PVPD/NaDC, 21.4 kJ mol?1; PVPD/LiDC, 25.3 kJ mol?1; PVPD/R12OSO3Na, 17.2 kJ mol?1; PVPD/R15COONa, 18.7 kJ mol?1. © 1993 John Wiley & Sons, Inc.  相似文献   

5.
The synthesis, structure, and solution‐state behavior of clothespin‐shaped binuclear trans‐bis(β‐iminoaryloxy)palladium(II) complexes doubly linked with pentamethylene spacers are described. Achiral syn and racemic anti isomers of complexes 1 – 3 were prepared by treating Pd(OAc)2 with the corresponding N,N′‐bis(β‐hydroxyarylmethylene)‐1,5‐pentanediamine and then subjecting the mixture to chromatographic separation. Optically pure (100 % ee) complexes, (+)‐anti‐ 1 , (+)‐anti‐ 2 , and (+)‐anti‐ 3 , were obtained from the racemic mixture by employing a preparative HPLC system with a chiral column. The trans coordination and clothespin‐shaped structures with syn and anti conformations of these complexes have been unequivocally established by X‐ray diffraction studies. 1H NMR analysis showed that (±)‐anti‐ 1 , (±)‐anti‐ 2 , syn‐ 2 , and (±)‐anti‐ 3 display a flapping motion by consecutive stacking association/dissociation between cofacial coordination planes in [D8]toluene, whereas syn‐ 1 and syn‐ 3 are static under the same conditions. The activation parameters for the flapping motion (ΔH and ΔS) were determined from variable‐temperature NMR analyses as 50.4 kJ mol?1 and 60.1 J mol?1 K?1 for (±)‐anti‐ 1 , 31.0 kJ mol?1 and ?22.7 J mol?1 K?1 for (±)‐anti‐ 2 , 29.6 kJ mol?1 and ?57.7 J mol?1 K?1 for syn‐ 2 , and 35.0 kJ mol?1 and 0.5 J mol?1 K?1 for (±)‐anti‐ 3 , respectively. The molecular structure and kinetic parameters demonstrate that all of the anti complexes flap with a twisting motion in [D8]toluene, although (±)‐anti‐ 1 bearing dilated Z‐shaped blades moves more dynamically than I‐shaped (±)‐anti‐ 2 or the smaller (±)‐anti‐ 3 . Highly symmetrical syn‐ 2 displays a much more static flapping motion, that is, in a see‐saw‐like manner. In CDCl3, (±)‐anti‐ 1 exhibits an extraordinary upfield shift of the 1H NMR signals with increasing concentration, whereas solutions of (+)‐anti‐ 1 and the other syn/anti analogues 2 and 3 exhibit negligible or slight changes in the chemical shifts under the same conditions, which indicates that anti‐ 1 undergoes a specific heterochiral association in the solution state. Equilibrium constants for the dimerizations of (±)‐ and (+)‐anti‐ 1 in CDCl3 at 293 K were estimated by curve‐fitting analysis of the 1H NMR chemical shift dependences on concentration as 26 M ?1 [KD(racemic)] and 3.2 M ?1 [KD(homo)], respectively. The heterochiral association constant [KD(hetero)] was estimated as 98 M ?1, based on the relationship KD(racemic)=1/2 KD(homo)+1/4 KD(hetero). An inward stacking motif of interpenetrative dimer association is postulated as the mechanistic rationale for this rare case of heterochiral association.  相似文献   

6.
7.
A theoretical study of the dimer formation of chiral 1,8a-dihydro-1,8-naphthyridine derivatives has been carried out by means of DFT calculations. In the cases treated, the heterochiral dimers (RS or SR) are always more stable than the homochiral ones (RR or SS). Two possible proton transfer processes have been studied, the concerted and the non-concerted ones. The non-concerted TS corresponds to a true TS while the concerted one presents two imaginary frequencies. The geometrical characteristics of the hydrogen bonds in all the structures calculated have been correlated using the Steiner–Limbach model.  相似文献   

8.
Geometry, thermodynamic, and electric properties of the π‐EDA complex between hexamethylbenzene (HMB) and tetracyanoethylene (TCNE) are investigated at the MP2/6‐31G* and, partly, DFT‐D/6‐31G* levels. Solvent effects on the properties are evaluated using the PCM model. Fully optimized HMB–TCNE geometry in gas phase is a stacking complex with an interplanar distance 2.87 × 10?10 m and the corresponding BSSE corrected interaction energy is ?51.3 kJ mol?1. As expected, the interplanar distance is much shorter in comparison with HF and DFT results. However the crystal structures of both (HMB)2–TCNE and HMB–TCNE complexes have interplanar distances somewhat larger (3.18 and 3.28 × 10?10 m, respectively) than our MP2 gas phase value. Our estimate of the distance in CCl4 on the basis of PCM solvent effect study is also larger (3.06–3.16 × 10?10 m). The calculated enthalpy, entropy, Gibbs energy, and equilibrium constant of HMB–TCNE complex formation in gas phase are: ΔH0 = ?61.59 kJ mol?1, ΔS = ?143 J mol?1 K?1, ΔG0 = ?18.97 kJ mol?1, and K = 2,100 dm3 mol?1. Experimental data, however, measured in CCl4 are significantly lower: ΔH0 = ?34 kJ mol?1, ΔS = ?70.4 J mol?1 K?1, ΔG0 = ?13.01 kJ mol?1, and K = 190 dm3 mol?1. The differences are caused by solvation effects which stabilize more the isolated components than the complex. The total solvent destabilization of Gibbs energy of the complex relatively to that of components is equal to 5.9 kJ mol?1 which is very close to our PCM value 6.5 kJ mol?1. MP2/6‐31G* dipole moment and polarizabilities are in reasonable agreement with experiment (3.56 D versus 2.8 D for dipole moment). The difference here is due to solvent effect which enlarges interplanar distance and thus decreases dipole moment value. The MP2/6‐31G* study supplemented by DFT‐D parameterization for enthalpy calculation, and by the PCM approach to include solvent effect seems to be proper tools to elucidate the properties of π‐EDA complexes. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2008  相似文献   

9.
Ab initio molecular orbital calculations with large, polarization basis sets and incorporating valence electron correlation have been employed to examine the [C2H2O] potential energy surface. Four [C2H2O] isomers have been identified as potentially stable, observable ions. These are the experimentally well-known ketene radical cation, [CH2?C?O] (a), and the presently unknown ethynol radical cation, [CH2?C? OH] (b), the oxirene radical cation (c) and an ion resembling a complex of CO with [CH2], (d). The calculated energies of b, c and d relative to a are 189, 257 and 259 kJ mol?1, respectively. Dissociation of ions a and d is found to occur without reverse activation energy.  相似文献   

10.
The gas‐phase pyrolytic and oxidative chemistry of furans has received much attention recently because of their potential as platform chemicals and biofuels. Typically these compounds exhibit very strong ring carbon to H or CH3 bonds. 2‐Methoxyfuran had been reported to be exceptionally unstable in comparison to related substituted heterocycles in pyrolytic experiments. The origins of its reactivity are shown to be due to the very weak O–CH3, which at 189.5 ± 1.9 kJ mol?1 is some 200 kJ mol?1 weaker than C–H bonds in the molecule. We show that the reported reactivity is somewhat overestimated but that does not alter the fact that 2‐methoxyfuran is exceptionally unstable. It may prove to be a useful alternative to azomethane as a thermal source of methyl radicals.  相似文献   

11.
Coenzyme B12 can assist radical enzymes that accomplish the vicinal interchange of a hydrogen atom with a functional group. It has been proposed that the Co? C bond homolysis of coenzyme B12 to cob(II)alamin and the 5′‐deoxyadenosyl radical is aided by hydrogen bonding of the corrin C19? H to the 3′‐O of the ribose moiety of the incipient 5′‐deoxyadenosyl radical, which is stabilized by 30 kJ mol?1 (B. Durbeej et al., Chem. Eur. J. 2009 , 15, 8578–8585). The diastereoisomers (R)‐ and (S)‐2,3‐dihydroxypropylcobalamin were used as models for coenzyme B12. A downfield shift of the NMR signal for the C19? H proton was observed for the (R)‐isomer (δ=4.45 versus 4.01 ppm for the (S)‐isomer) and can be ascribed to an intramolecular hydrogen bond between the C19? H and the oxygen of CHOH. Crystal structures of (R)‐ and (S)‐2,3‐dihydroxypropylcobalamin showed C19? H???O distances of 3.214(7) Å (R‐isomer) and 3.281(11) Å (S‐isomer), which suggest weak hydrogen‐bond interactions (?ΔG<6 kJ mol?1) between the CHOH of the dihydroxypropyl ligand and the C19? H. Exchange of the C19? H, which is dependent on the cobalt redox state, was investigated with cob(I)alamin, cob(II)alamin, and cob(III)alamin by using NMR spectroscopy to monitor the uptake of deuterium from deuterated water in the pH range 3–11. No exchange was found for any of the cobalt oxidation states. 3′,5′‐Dideoxyadenosylcobalamin, but not the 2′,5′‐isomer, was found to act as a coenzyme for glutamate mutase, with a 15‐fold lower kcat/KM than 5′‐deoxyadenosylcobalamin. This indicates that stabilization of the 5′‐deoxyadenosyl radical by a hydrogen bond that involves the C19? H and the 3′‐OH group of the cofactor is, at most, 7 kJ mol?1 (?ΔG). Examination of the crystal structure of glutamate mutase revealed additional stabilizing factors: hydrogen bonds between both the 2′‐OH and 3′‐OH groups and glutamate 330. The actual strength of a hydrogen bond between the C19? H and the 3′‐O of the ribose moiety of the 5′‐deoxyadenosyl group is concluded not to exceed 6 kJ mol?1 (?ΔG).  相似文献   

12.
After a set of 32 free radicals was presented (Int J Chem Kin 34, 550–560, 2002), an additional 60 free radicals (Set‐2) were studied and characterized by energy minimum structures, harmonic vibrational wave numbers ωe, moments of inertia IA, IB, and IC, heat capacities Cop(T), standard entropies So(T), thermal energy contents Ho(T) ? Ho(0), and standard enthalpies of formation ΔfHo(T) at the G3MP2B3 level of theory. Thermodynamic functions at T = 298.15 K are presented and compared with recent experimental values where these are available. The mean absolute deviation between calculated and experimental ΔfHo(298.15) values by the previous set of 32 radicals is 3.91 kJ mol?1. For the sake of comparison, only 49 species out of the 60 radicals of Set‐2 are characterized by experimental enthalpies of formation, and the corresponding mean absolute deviation between calculated and experimental ΔfHo(298.15) values is 8.96 kJ mol?1. This situation is cause for demand of more and also more accurate experimental values. In addition to the above properties, parent molecules of a large set of the respective radicals are calculated to obtain bond dissociation energies Do(298.15). Radical stabilization owing to resonance is discussed using the complete sets of total atomic spin densities ρ as a support. In particular, a short review about recent developments of the first‐order Jahn–Teller radical c‐C5H5? is presented. In addition, radicals with negative bond energies are described, such as ?CH2OOH where the reaction path to CH2O + HO? has been calculated, as well as radicals which have two different parent molecules, for example C?N? O?. For the reaction HO? + CO → H? + CO2, two reaction paths are characterized by a total of 14 stationary points where the intermediate radicals HO? ?CO and HC(O)O? are involved. © 2004 Wiley Periodicals, Inc. Int J Chem Kinet 36: 661–686, 2004  相似文献   

13.
This work presents an analysis of the equivalence of MP2 and DFT (B3LYP functional) conformational populations. As a test case, we select three cholinergic agents (trans‐nicotine, acetylcholine, and the nicotinic analgesic ABT‐594), where the minima on the conformational energy hypersurfaces expand a large range of energies (~0–30 kJ mol?1). From energetic and structural data obtained in vacuo at the MP2 and B3LYP/cc‐pVDZ levels, we build conformational partition functions, including the effect of the conformational kinetic energy and the rotovibrational coupling. Our results at a physiological temperature (37°C) show qualitative agreement in all cases. Quantitative agreement, however, is only found for trans‐nicotine and ABT‐594. In the first case, energy minima differ by <0.2 kJ mol?1. Therefore, the equivalence of structural results translates in the equivalence of the conformational distribution. For ABT‐594, the minima are separated by as much as 8.0 kJ mol?1, and the conformational energy determines the conformational distribution. In this case, the slight relative variation of conformational energy, between B3LYP and MP2, does not affect the population, since the secondary minima are high in energy and very low in population. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem, 2005  相似文献   

14.
The rotational spectra of two isotopologues of a 1:1 difluoromethane–dichloromethane complex have been investigated by pulsed‐jet Fourier‐transform microwave spectroscopy. The assigned (most stable) isomer has Cs symmetry and it displays a network of two C? H???Cl? C and one C? H???F? C weak hydrogen bonds, thus suggesting that the former interactions are stronger. The hyperfine structures owing to 35Cl (or 37Cl) quadrupolar effects have been fully resolved, thus leading to an accurate determination of the three diagonal (χgg; g=a, b, c) and the three mixed quadrupole coupling constants (χgg′; g, g′=a, b, c; gg′). Information on the structural parameters of the hydrogen bonds has been obtained. The dissociation energy of the complex has been estimated to be 7.6 kJ mol?1.  相似文献   

15.
Geometrical and energetic characteristics of crystal hydrates of individual aromatic sulfonic acids and their complexes with poly(vinyl alcohol) as well as the paths for the proton transport in them are calculated in the framework of the density functional theory (version B3LYP) employing the 6-31G** basis set. The energy of attachment of water to ortho-substituted aromatic sulfonic acids is demonstrated to diminish from 74.4 to 54.8 kJ mol?1 in the following series of substituents: -OH,-F,-CH3,-H,-Cl, and -COOH. For the dimers that comprise individual phenolsulfonic acids, the energy of attachment of one water molecule to the SO3H group is estimated to be equal to 92–105 kJ mol?1. In the dimers comprising individual phenolsulfonic acids, the specific energy of intermolecular bonds (bond energy per monomer molecule) is found to be equal to 49.3 and 58.5 kJ mol?1 for, respectively, phenol-2,4-disulfo and phenol-2-sulfo acids. During the formation of polymer membranes based on poly(vinyl alcohol) and phenolsulfonic acids, it is energetically favorable that at least one water molecule should remain in the vicinity of the SO3H fragment. According to the calculations, the proton migration along the SO3H group in anhydrous environment is hampered by a barrier of 125–132 kJ mol?1. In the presence of water, the proton conductivity is of a relay character, with an activation barrier equal to 21–33 kJ mol?1. The latter value is close to experimental data (17–25 kJ mol?1).  相似文献   

16.
[RuCl2(NCCH3)2(cod)], an alternative starting material to [RuCl2(cod)] n for the preparation of ruthenium(II) complexes, has been prepared from the polymer compound and isolated in yields up to 87% using a new work-up procedure. The compound has been obtained as a yellow solid without water of crystallization. The complexes [RuCl2(NCR)2(cod)] spontaneously transform into dimers [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph). 1H NMR kinetic experiments for these transformations evidenced first-order behavior. [RuCl2(NCPh)2(cod)] dimerizes slower by a factor of ten than [RuCl2(NCCH3)2(cod)]. The following activation parameters, ΔH #?=?114?±?3?kJ?mol?1 and ΔS #?=?66?±?9?J?K?1?mol?1 for R?=?CH3CN (ΔG #?=?94?±?5?kJ?mol?1, 298.15?K) and ΔH #?=?122?±?2?kJ?mol?1 and ΔS #?=?75?±?6?J?K?1?mol?1 for R?=?Ph (ΔG #?=?100?±?4?kJ?mol?1, 298.15?K), have been calculated from the first-order rate constants in the temperature range 294–323?K. The kinetic parameters are in agreement with a two-step mechanism with dissociation of acetonitrile as the rate-determining step. The molecular structures of [Ru2Cl(μ-Cl)3(cod)2(NCR)] (R?=?Me, Ph) have been determined by X-ray diffraction.  相似文献   

17.
The dynamic behavior of the N,N,N′,N′‐tetramethylethylenediamine (tmeda) ligand has been studied in solid lithium‐fluorenide(tmeda) ( 3 ) and lithium‐benzo[b]fluorenide(tmeda) ( 4 ) using CP/MAS solid‐state 13C‐ and 15N‐NMR spectroscopy. It is shown that, in the ground state, the tmeda ligand is oriented parallel to the long molecular axis of the fluorenide and benzo[b]fluorenide systems. At low temperature (<250 K), the 13C‐NMR spectrum exhibits two MeN signals. A dynamic process, assigned to a 180° rotation of the five‐membered metallacycle (π‐flip), leads at elevated temperatures to coalescence of these signals. Line‐shape calculations yield ΔH?=42.7 kJ mol?1, ΔS?=?5.3 J mol?1 K?1, and =44.3 kJ mol?1 for 3 , and ΔH?=36.8 kJ mol?1, ΔS?=?17.7 J mol?1 K?1, and =42.1 kJ mol?1 for 4 , respectively. A second dynamic process, assigned to ring inversion of the tmeda ligand, was detected from the temperature dependence of T1ρ, the 13C spin‐lattice relaxation time in the rotating frame, and led to ΔH?=24.8 kJ mol?1, ΔS?=?49.2 J mol?1 K?1, and =39.5 kJ mol?1 for 3 , and ΔH?=18.2 kJ mol?1, ΔS?=?65.3 J mol?1 K?1, and =37.7 kJ mol?1 for 4 , respectively. For (D12)‐ 3 , the rotation of the CD3 groups has also been studied, and a barrier Ea of 14.1 kJ mol?1 was found.  相似文献   

18.
The positive electrostatic potentials (ESP) outside the σ‐hole along the extension of O? P bond in O?PH3 and the negative ESP outside the nitrogen atom along the extension of the C? N bond in NCX could form the Group V σ‐hole interaction O?PH3?NCX. In this work, the complexes NCY?O?PH3?NCX and O?PH3?NCX?NCY (X, Y?F, Cl, Br) were designed to investigate the enhancing effects of Y?O and X?N halogen bonds on the P?N Group V σ‐hole interaction. With the addition of Y?O halogen bond, the V S, max values outside the σ‐hole region of O?PH3 becomes increasingly positive resulting in a stronger and more polarizable P?N interaction. With the addition of X?N halogen bond, the V S, min values outside the nitrogen atom of NCX becomes increasingly negative, also resulting in a stronger and more polarizable P?N interaction. The Y?O halogen bonds affect the σ‐hole region (decreased density region) outside the phosphorus atom more than the P?N internuclear region (increased density region outside the nitrogen atom), while it is contrary for the X?N halogen bonds. © 2015 Wiley Periodicals, Inc.  相似文献   

19.
A computational study of the intramolecular pnicogen bond in PHF? (CH2)n? PHF (n=2–6) systems was carried out. For each compound, two different conformations, (R,R) and (R,S), were considered on the basis of the chirality of the phosphine groups. The characteristics of the closed conformers, in which the pnicogen interaction occurs, were compared with those of the extended conformer. In several cases, the closed conformations are more stable than the extended conformations. The calculated interaction energies of the pnicogen contact, by means of isodesmic reactions, provide values between ?3.4 and ?26.0 kJ mol?1. Atoms in molecules and electron localization function analysis of the electron density showed that the systems in the closed conformations with short P ??? P distances have a partial covalent character in this interaction. The calculated absolute chemical shieldings of the P atoms showed an exponential relationship with the P ??? P distance. In addition, a search in the Cambridge crystallographic database was carried out to detect those compounds with a potential intramolecular pnicogen bond in the solid phase.  相似文献   

20.
A series of zinc(II) silylenes was prepared by using the silylene {PhC(NtBu)2}(C5Me5)Si. Whereas reaction of the silylene with ZnX2 (X=Cl, I) gave the halide‐bridged dimers [{PhC(NtBu)2}(C5Me5)SiZnX(μ‐X)]2, with ZnR2 (R=Ph, Et, C6F5) as reagent the monomers [{PhC(NtBu)2}(C5Me5)SiZnR2] were obtained. The stability of the complexes and the Zn?Si bond lengths clearly depend on the substitution pattern of the zinc atom. Electron‐withdrawing groups stabilize these adducts, whereas electron‐donating groups destabilize them. This could be rationalized by quantum chemical calculations. Two different bonding modes in these molecules were identified, which are responsible for the differences in reactivity: 1) strong polar Zn?Si single bonds with short Zn?Si distances, Zn?Si force constants close to that of a classical single bond, and strong binding energy (ca. 2.39 Å, 1.33 mdyn Å?1, and 200 kJ mol?1), which suggest an ion pair consisting of a silyl cation with a Zn?Si single bond; 2) relatively weak donor–acceptor Zn?Si bonds with long Zn?Si distances, low Zn?Si force constants, and weak binding energy (ca. 2.49 Å, 0.89 mdyn Å?1, and 115 kJ mol?1), which can be interpreted as a silylene–zinc adduct.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号