首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
Flower power : Unique 3D flower‐like Bi2O3 hierarchical nanostructures were synthesized using a mild aqueous template‐free method (see figure). By introducing VO3? into the reaction system, which mediated the nucleation and growth of Bi2O3, the in situ self‐assembly of 3D hierarchitectures from 2D nanosheets has been realized.

  相似文献   


2.
3.
This article describes a facile solvothermal method by using mixed solvents for the large-scale synthesis of Bi(2)S(3) nanoribbons with lengths of up to several millimeters. These nanoribbons were formed by a solvothermal reaction between Bi(III)-glycerol complexes and various sulfur sources in a mixed solution of aqueous NaOH and glycerol. HRTEM (high-resolution transmission electron microscopy) and SAED (selective-area electron diffraction) studies show that the as-synthesized nanoribbons had predominately grown along the [001] direction. The Bi(2)S(3) nanoribbons prepared by the use of different sulfur sources have a common formation process: the initial formation of NaBiS(2) polycrystals, which serve as the precursors to Bi(2)S(3), the decomposition of NaBiS(2), and the formation of Bi(2)S(3) seeds in the solution through a homogeneous nucleation process; the growth of Bi(2)S(3) nanoribbons occurs at the expense of NaBiS(2) materials. The growth mechanism of millimeter-scale nanoribbons involves a special solid-solution-solid transformation as well as an Ostwald ripening process. Some crucial factors affect nanoribbon growth, such as, solvothermal temperature, volume ratio of glycerol to water, and the concentration of NaOH; these have also been discussed.  相似文献   

4.
5.
在不同咪唑基离子液体中, 利用微波辅助法快速合成了不同形貌的Bi2S3纳米粒子和Bi19Br3S27纳米棒. 利用XRD, TEM和SEM对合成产物进行了结构和形貌的表征. 实验结果表明离子液体在合成过程中对产物的相结构和形貌发挥了重要的作用. 实验中还进一步考察了不同实验条件对产物形貌的影响. 对实验的合成机理进行了初步探讨. 对不同形貌和纳米结构的Bi2S3和Bi19Br3S27进行了UV-Vis光谱分析.  相似文献   

6.
用研磨电极研究Bi2O3的循环伏安行为   总被引:1,自引:0,他引:1  
用研磨电极研究Bi2O3的循环伏安行为;微电极;氧化铋;循环伏安  相似文献   

7.
New complexes catena‐(μ2‐nitrato‐O,O′)bis(piperidinedithiocarbamato)bismuth(III) ( 1 ) and tetrakis(μ‐nitrato)tetrakis[bis(tetrahydroquinolinedithiocarbamato)bismuth(III)] ( 2 ) were synthesised and characterised by elemental analysis, FTIR spectroscopy and thermogravimetric analysis. The single‐crystal X‐ray structures of 1 and 2 were determined. The coordination numbers of the BiIII ion are 8 for 1 and ≥6 for 2 when the experimental electron density for the nominal 6s2 lone pair of electrons is included. Both complexes were used as single‐source precursors for the synthesis of dodecylamine‐, hexadecylamine‐, oleylamine and tri‐n‐octylphosphine oxide‐capped Bi2S3 nanoparticles at different temperatures. UV/Vis spectra showed a blueshift in the absorbance band edge characteristic of a quantum size effect. High‐quality, crystalline, long and short Bi2S3 nanorods were obtained depending on the thermolysis temperature, which was varied from 190 to 270 °C. A general trend of increasing particle breadth with increasing reaction temperature and increasing length of the carbon chain of the amine (capping agent) was observed. Powder XRD patterns revealed the orthorhombic crystal structure of Bi2S3.  相似文献   

8.
Au–Bi2S3 heteronanostructure photocatalysts were designed in which the coupling of a metal plasmon and a semiconductor exciton aids the absorption of solar light, enhances charge separation, and results in improved catalytic activity. Furthermore, these nanostructures show a unique pattern of structural combination, with Au nanoparticles positioned at the center of Bi2S3 nanorods. The chemistry of formation of these nanostructures, their epitaxy at the junction, and their photoconductance were studied, as well as their photoresponse properties.  相似文献   

9.
Uniform bismuth oxide (Bi2O3) and bismuth subcarbonate ((BiO)2CO3) nanotubes were successfully synthesized by a facile solvothermal method without the need for any surfactants or templates. The synergistic effect of ethylene glycol (EG) and urea played a critical role in the formation of the tubular nanostructures. These Bi2O3 and (BiO)2CO3 nanotubes exhibited excellent CrVI‐removal capacity. Bi2O3 nanotubes, with a maximum CrVI‐removal capacity of 79 mg g?1, possessed high removal ability in a wide range of pH values (3–11). Moreover, Bi2O3 and (BiO)2CO3 nanotubes also displayed highly efficient photocatalytic activity for the degradation of RhB under visible‐light irradiation. This work not only demonstrates a new and facile route for the fabrication of Bi2O3 and (BiO)2CO3 nanotubes, but also provides new promising adsorbents for the removal of heavy‐metal ions and potential photocatalysts for environmental remediation.  相似文献   

10.
11.
12.
High‐quality Bi2S3 nanowires are synthesized by chemical vapor deposition and their intrinsic photoresponsive and field‐effect characteristics are explored in detail. Among the studied Au–Au, Ag–Ag, and Au–Ag electrode pairs, the device with stepwise band alignment of asymmetric Au–Ag electrodes has the highest mobility. Furthermore, it is shown that light can cause a sevenfold decrease of the on/off ratio. This can be explained by the photoexcited charge carriers that are more beneficial to the increase of Ioff than Ion. The photoresponsive properties of the asymmetric Au–Ag electrode devices were also explored, and the results show a photoconductive gain of seven with a rise time of 2.9 s and a decay time of 1.6 s.  相似文献   

13.
以Bi(NO3)3·5H2O和Na2S2O3·5H2O为原料,用乙二胺四乙酸(EDTA)辅助水热法合成了纳米或微米级的Bi2S3晶体(1),其结构、形貌和光谱性能经XRD,FE-SEM和UV-Vis表征。结果表明:溶液的pH对1的形貌有显著的影响,随着pH的增大,1由纳米棒组成的微米球逐渐转变为微米级片状结构;1出现蓝移。  相似文献   

14.
Bismuthinite (Bi2S3) nanostructures were prepared by a hydrothermal method with sodium ethylenediaminetetraacetate (EDTA‐Na2). The morphology of Bi2S3 nanostructures was changed from a nanorod to a nanoplate by presence of the EDTA‐Na2. The altered morphology was caused by the capping effect of EDTA‐Na2 with Bi3+ ions, which induces the suboptimal growth direction due to partially blocking the preferential orientation direction. When the EDTA‐Na2/Bi3+ molar ratio=1, the growth of Bi2S3 nanostructures was not allowed due to the chelating effect of EDTA‐Na2. The obtained Bi2S3 nanorods, stacked nanorods, nanoplates and nanoparticles were characterized using X‐ray diffraction (XRD), transmission electron microscopy (TEM), high‐resolution transmission electron microscopy (HRTEM) and selected area electron diffraction (SAED) pattern. A possible formation mechanism of these morphologies was proposed. The successful synthesis of various morphologies of nanostructured Bi2S3 may open up new possibilities for thermoelectric, electronic and optoelectronic uses of nanodevices based on Bi2S3 nanostructure.  相似文献   

15.
16.
A mild three‐step solution strategy is developed to prepare Ag? MS (M=Zn, Cd) nanoheterostructures composed of MS nanorods with silver tips. First, Ag2S? MS heterostructures are synthesized by following a solution–liquid–solid mechanism with Ag2S nanoparticles as catalysts, then the Ag2S sections of the heterostructures are converted into silver nanoparticles by selective extraction of sulfur. Notably, for the prepared Ag? CdS heterostructures, the localized surface plasmon resonance of silver remarkably intensifies the photoluminescence of CdS by enhancing the excitation light absorption, which is beneficial for potential applications of CdS nanoparticles in the fields of biolabeling, light‐emitting diodes, and so forth. The strategy reported herein would be useful for designing and fabricating other metal–semiconductor hybrid nanostructures with desirable performances.  相似文献   

17.
Nanothread-based porous spongelike Ni3S2 nanostructures were synthesized directly on Ni foil by using a simple biomolecule-assisted method. By varying the experimental parameters, other novel Ni3S2 nanostructures could also be fabricated on the nickel substrate. The electrochemical hydrogen-storage behavior of these novel porous Ni3S2 nanostructures was investigated as an example of the potential properties of such porous materials. The thread-based porous spongelike Ni3S2 could electrochemically charge and discharge with the high capacity of 380 mAh g(-1) (corresponding to 1.4 wt % hydrogen in single-walled nanotubes (SWNT)). A novel two-charging-plateaux phenomenon was observed in the synthesized porous spongelike Ni3S2 nanostructures, suggesting two independent steps in the charging process. We have demonstrated that the morphology of the synthesized Ni3S2 nanostructures had a noticeable influence on their electrochemical hydrogen-storage capacity. This is probably due to the size and density of the pores as well as the microcosmic morphology of different nickel sulfide nanostructures. These novel porous Ni3S2 nanostructures should find wide applications in hydrogen storage, high-energy batteries, luminescence, and catalytic fields. This facile, environmentally benign, and solution-phase biomolecule-assisted method can be potentially extended to the preparation of other metal sulfide nanostructures on metal substrates, such as Cu, Fe, Sn, and Pb foils.  相似文献   

18.
Self‐assembled Bi2Te3 one‐dimensional nanorod bundles have been fabricated by a low‐cost and facile solvothermal method with ethylene diamine tetraacetic acid as an additive. The phase structures and morphologies of the samples were characterized by X‐ray diffraction, scanning electron microscopy, Fourier‐transform infrared spectrometry, and transmission electron microscope measurements. The growth mechanisms have been proposed based on the experimental results. The full thermoelectric properties of the nanorod bundles have been characterized and show a large improvement in the thermal conductivity attributed to phonon scattering of the nanostructures and then enhance the thermoelectric figure of merit. This work is promising for the realization of new types of highly efficient thermoelectric semiconductors by this method.  相似文献   

19.
Synthesis of Bi2O3 and Bi4(SiO4)3 Thin Films by the Sol-Gel Method   总被引:3,自引:0,他引:3  
Bi2O3 thin films were prepared by dipping silica slides in ethanolic solutions of tris(2,2-6,6-tetramethylheptane-3, 5-dionato)bismuth(III) [Bi(dpm)3] [1] and heating in air at temperatures 500°C. Bi4(SiO4)3 homogeneous thin films were obtained from the reaction of the bismuth oxide coating with the silica glass substrate at temperatures higher than 700°C. For heat treatments at temperatures between 600°C and 700°C, Bi2SiO5 coatings were obtained. The composition and microstructure evolution of the films were determined by Secondary Ion-Mass Spectrometry (SIMS), X-Ray Photoelectron Spectroscopy (XPS) and Glancing Angle X-Ray Diffraction (GA-XRD). The synthesis procedure was reproducible and allowed the control of the Bi2O3 phase composition. Moreover, the thin film annealing parameters were correlated with the formation of bismuth silicates, among which Bi4(SiO4)3 (BSO) is very appealing for the production of fast light-output scintillators [2].  相似文献   

20.
尹汉东  王传华  邢秋菊 《中国化学》2005,23(12):1631-1636
Three bismuth(Ⅲ) complexes Bi(1,10-phen)[S2CN(CH3)2]2(NO3) (1), {Bi(S2COCH3)[S2CNC6Hs(CH3)]2}2 (2) and [Bi(S2CNBu2)2(CH3OH)(NO3)]∞ (3) were synthesized and characterized by elemental analysis and IR spectra. Their crystal structures were determined by X-ray single crystal diffraction analysis. Studies show that complex 1 has a monomeric structure with the central bismuth atom eight-coordinated in a capped distorted pentagonal bipyramidal geometry. The complex 2 takes centrosymmetric dimeric structure and the bismuth atoms are seven-coordinated in distorted pentagonal bipyramidal geometry.In complex 3, the bismuth atoms are seven-coordinated in distorted pentagonal bipyramidal geometry by bridging nitrate O atoms and the resulting structure is onedimensional infinite chain polymer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号