首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 45 毫秒
1.
Transport of Am(III) was studied through the composite polymer membrane of Cyanex-301 [bis(2,4,4-trimethylpentyl)dithiophosphinic acid] and tri-n-butylphosphate (TBP). Depending on the pH of the strip solution containing alpha-hydroxyisobutyric acid (AHIBA), the transport behaviour of Am(III) was changed significantly. After approximately 70% of the Am(III) transported to the strip side, interestingly, back transport of Am(III) was observed at a pH of 3.5. The back transport phenomenon was not so significant at pH 1 and 5.7. The back transport of Am(III) was attributed to the transport of AHIBA from strip to the feed side due to its interaction with TBP in the membrane and the attainment of Donnan equilibrium because of the presence of Na(+) in the feed as the driving ion. The experimental observations were rationalized using the hydrogen bonding interaction energies obtained through ab initio molecular orbital and DFT calculations.  相似文献   

2.
The structure of the extraction complexes of light lanthanides (La(III), Nd(III), Eu(III)) with bis(2,4,4-trimethylpentyl)dithiophosphinic acid (HBTMPDTP) have been characterized with extended X-ray absorption fine structure spectroscopy (EXAFS), IR, and MS; the IR spectrum of the extraction complex of (241)Am with HBTMPDTP has been studied too. The molecular formula of the extraction complexes of lanthanides is deduced to be HML(4).H(2)O (M = La, Nd, Eu; L = anion of HBTMPDTP). The coordination number of Ln(III) in the complexes is 8; the coordinated donor atoms are 7 sulfur atoms from 4 HBTMDTP molecules and 1 O atom from a hydrated water molecule. With the increase of the atomic number of Ln, the coordination bond lengths of Ln-O and Ln-S decrease in the complexes. For La(III), Nd(III), and Eu(III), the coordination bond lengths of Ln-O are 2.70, 2.56, and 2.50, respectively, the coordination bond lengths of Ln-S are 3.01, 2.91, and 2.84, respectively, and the average distances between Ln and P atoms are 3.60, 3.53, and 3.46, respectively. The structure of the extraction complexes of Ln(III) with HBTMDTP is different from that of the Am(III) extraction complex. The results of IR show that there is no water coordinated with Am in the extraction complex. The molecular formula of the complex of Am(III) is deduced as being HAmL(4), and there are 8 S atoms from 4 HBTMPDTP molecules coordinated with Am. Composition and structure differences of the extraction complexes may be one of the most most important factors affecting the excellent selectivity of HBTMPDTP for Am(III) over Ln(III).  相似文献   

3.
The complexes of trivalent actinide (Am(III) and Cm(III)) and lanthanide (Nd(III) and Sm(III)) cations with bis(2,4,4-trimethylpentyl)phosphinic acid, bis(2,4,4-trimethylpentyl)monothiophosphinic acid, and bis(2,4,4-trimethylpentyl)dithiophosphinic acid in n-dodecane have been studied by visible absorption spectroscopy and X-ray absorption fine structure (XAFS) measurements in order to understand the chemical interactions responsible for the great selectivity the dithiophosphinate ligand exhibits for trivalent actinide cations in liquid-liquid extraction. Under the conditions studied, each type of ligand displays a different coordination mode with trivalent f-element cations. The phosphinate ligand coordinates as hydrogen-bonded dimers, forming M(HL2)3. Both the oxygen and the sulfur donor of the monothiophosphinate ligand can bind the cations, affording both bidentate and monodentate ligands. The dithiophosphinate ligand forms neutral bidentate complexes, ML3, with no discernible nitrate or water molecules in the inner coordination sphere. Comparison of the Cm(III), Nd(III), and Sm(III) XAFS shows that the structure and metal-donor atom bond distances are indistinguishable within experimental error for similarly sized trivalent lanthanide and actinide cations, despite the selectivity of bis(2,4,4-trimethylpentyl)dithiophosphinic acid for trivalent actinide cations over trivalent lanthanide cations.  相似文献   

4.
Solvent extraction of Pr(III) and Th(IV) has been investigated with commercial extractants of CYANEX 301 (bis(2,4,4-trimethylpentyl) dithiophosphinic acid) and CYANEX 302 (bis(2,4,4-trimethylpentyl) monothiophosphinic acid) in kerosene from nitrate medium. The effects of various parameters affecting the extraction equilibrium of Th(IV) and Pr(III), including temperature, were studied and the stoichiometry of the extracted Th(IV) and Pr(III) species was elucidated. The separation of Th(IV) from Pr(III) depending on the difference in the extraction behavior of the two extractants towards these metals is given and discussed.This revised version was published online in November 2005 with corrections to the Cover Date.  相似文献   

5.
Cao X  Heidelberg D  Ciupka J  Dolg M 《Inorganic chemistry》2010,49(22):10307-10315
The experimentally observed extraction complexes of trivalent lanthanide Eu(III) and actinide Am(III)/Cm(III) cations with purified Cyanex301 [bis(2,4,4-trimethylpentyl)dithiophosphinic acid, HBTMPDTP denoted as HL], i.e., ML(3) (M = Eu, Am, Cm) as well as the postulated complexes HAmL(4) and HEuL(4)(H(2)O) have been studied by using energy-consistent 4f- and 5f-in-core pseudopotentials for trivalent f elements, combined with density functional theory and second-order M?ller-Plesset perturbation theory. Special attention was paid to explaining the high selectivity of Cyanex301 for Am(III)/Cm(III) over Eu(III). It is shown that the neutral complexes ML(3), where L acts as a bidentate ligand and the metal cation is coordinated by six S atoms, are most likely the most stable extraction complexes. The calculated metal-sulfur bond distances for ML(3) do reflect the cation employed; i.e., the larger the cation, the longer the metal-sulfur bond distances. The calculated M-S and M-P bond lengths agree very well with the available experimental data. The obtained changes of the Gibbs free energies in the extraction reactions M(3+) + 3HL → ML(3) + 3H(+) agree with the thermodynamical priority for Am(3+) and Cm(3+). Moreover, the ionic metal-ligand dissociation energies of the extraction complexes ML(3) show that, although EuL(3) is the most stable complex in the gas phase, it is the least stable in aqueous solution.  相似文献   

6.
Separation of trivalent lanthanides (Ln(III)) and actinides (An(III)) is a key issue in the advanced spent nuclear fuel reprocessing. In the well-known trivalent actinide lanthanide separation by phosphorus reagent extraction from aqueous komplexes (TALSPEAK) process, the organophosphorus ligand HDEHP (di-(2-ethylhexyl) phosphoric acid) has been used as an efficient reagent for the partitioning of Ln(III) from An(III) with the combination of a holdback reagent in aqueous lactate buffer solution. In this work, the structural and electronic properties of Eu3+ and Am3+ complexes with HDEHP in nitric acid solution have been systematically explored by using scalar-relativistic density functional theory (DFT). It was found that HDEHP can coordinate with M(III) (M=Eu, Am) cations in the form of hydrogen-bonded dimers HL2- (L=DEHP), and the metal ions prefer to coordinate with the phosphoryl oxygen atom of the ligand. For all the extraction complexes, the metal-ligand bonds are mainly ionic in nature. Although Eu(III) complexes have higher interaction energies, the HL2- dimer shows comparable affinity for Eu(III) and Am(III) according to thermodynamic analysis, which may be attributed to the higher stabilities of Eu(III) nonahydrate. It is expected that this work could provide insightful information on the complexation of An(III) and Ln(III) with HDEHP at the molecular level.  相似文献   

7.
The selective transport of Am across a supported liquid membrane (SLM) has been investigated by using bis (2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301) as a mobile carrier. This extractant containing soft donor atoms exhibits strong affinity for actinoids, giving a large separation factor between trivalent Am and Eu. Separation of Am from Eu was achieved by an SLM containing highly purified Cyanex 301. Americium was preferentially transported across the SLM and concentrated in the product solution, while most of Eu remained in the feed solution.  相似文献   

8.
The aim of this work is to investigate extraction of ruthenium(III) from acidic aqueous solutions with phosphonium ionic liquids such as trihexyl(tetradecyl)phosphonium chloride (Cyphos IL 101), trihexyl(tetradecyl)phosphonium bis(2,4,4-trimethylpentyl)phosphinate (Cyphos IL 104) and tributyl(tetradecyl)phosphonium chloride (Cyphos IL 167) as extractants. The influence of HCl content in the feed solutions on extraction of Ru(III) was investigated. The research was performed for model solutions containing Ru(III) and a mixture of waste solutions containing Ru(III) and Rh(III). In addition, investigation of the type of extractant and its concentration in the organic phase on extraction of Ru(III) was carried out. Co-extraction of protons to the organic phase was determined. To the best of our knowledge, the extraction of Ru(III) with Cyphos IL 167 (tributyl(tetradecyl)phosphonium chloride) as an extractant has not yet been described in the scientific literature.  相似文献   

9.
The extraction behavior of certain tervalent lanthanides (Ln) such as La, Pr, Eu, Ho and Yb, using a chloroform solution containing bis(2,4,4-trimethylpentyl)phosphinic acid (HBTMPP), either alone or combined with one of three adductants, trioctylphosphine oxide (TOPO), octyl(phenyl)-N,N-diisobutylcarbamoylmethylphosphine oxide (CMPO) or methylenbis(diphenylphosphine) oxide (MBDPO), was studied. The stoichiometry, extraction constants and separation factors of these systems were determined. Lanthanide ions were found to be extracted in the presence of TOPO (B), Ln(HL2)3, or as the adduct complexes, Ln(HL2)2B. Neither CMPO nor MBDPO was found to form adducts.  相似文献   

10.
The extraction of thorium(IV) and uranium(VI) from nitric acid solutions has been studied using mixtures of bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex272 or HA), and synergistic extractants (S) such as tri-butylphosphate (TBP), tri-octylphosphine oxide (TOPO) or bis(2,4,4-trimethylpentyl)thiophosphinic acid (Cyanex301). The results showed that these metallic ions are extracted into kerosene as Th(OH)2(NO3)A·HA and UO2(NO3)A·HA with Cyanex272 alone. In the presence of neutral organophosphorus ligands TBP and TOPO, they are found to be extracted as Th(OH)2(NO3)A·HA·S and UO2(NO3)A·HA·S. On the other hand, Th(IV), U(VI) are extracted as Th(OH)2(NO3)A·HA·2S and UO2(NO3)A·HA·S in the presence of Cyanex301. The addition of neutral extractants such as TOPO and TBP to the extraction system enhanced the extraction efficiency of both elements while Cyanex301 as an acidic extractant has improved the selectivity between uranium and thorium. The effect of TOPO on the extraction was higher than other extractants. The equilibrium constants of above species have been estimated by non-linear regression method. The extraction amounts were determined and the results were compared with those of TBP. Also, it was found that the binding to the neutral ligands by the thorium–Cyanex272 complexes follows the neutral ligand basicity sequence.  相似文献   

11.
Synergistic extraction of trivalent rare earths from nitrate solutions using mixtures of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301=HX) and trialkyl phosphine oxide (Cyanex 923=TRPO) in xylene has been investigated. The results demonstrate that these trivalent metal ions are extracted into xylene as MX(3).3HX with Cyanex 301 alone. In the presence of Cyanex 923, La(III) and Nd(III) are found to be extracted as MX(2).NO(3).TRPO. On the other hand, Eu(III), Y(III) and heavier rare earths are found to be extracted as MX(3).HX.2TRPO. The addition of a trialkylphosphine oxide to the metal extraction system not only enhances the extraction efficiency of these metal ions but also improves the selectivities significantly, especially between yttrium and heavier lanthanides. The separation factors between these metal ions were calculated and compared with that of commercially important extraction systems like di-2-ethylhexyl phosphoric acid.  相似文献   

12.
The cloud point extraction behaviors of lanthanoids(III) (Ln(III) = La(III), Eu(III) and Lu(III)) with and without di(2-ethylhexyl)phosphoric acid (HDEHP) using Triton X-100 were investigated. It was suggested that the extraction of Ln(III) into the surfactant-rich phase without added chelating agent was caused by the impurities contained in Triton X-100. The extraction percentage more than 91% for all Ln(III) metals was obtained using 3.0 × 10−5 mol dm−3 HDEHP and 2.0% (v/v) Triton X-100. From the equilibrium analysis, it was clarified that Ln(III) was extracted as Ln(DEHP)3 into the surfactant-rich phase. The extraction constant of Ln(III) with HDEHP and 2.0% (v/v) Triton X-100 were also obtained.  相似文献   

13.
The quadridentate N-heterocyclic ligand 6-(5,5,8,8-tetramethyl-5,6,7,8-tetrahydro-1,2,4-benzotriazin-3-yl)-2,2'?:?6',2'-terpyridine (CyMe(4)-hemi-BTBP) has been synthesized and its interactions with Am(III), U(VI), Ln(III) and some transition metal cations have been evaluated by X-ray crystallographic analysis, Am(III)/Eu(III) solvent extraction experiments, UV absorption spectrophotometry, NMR studies and ESI-MS. Structures of 1:1 complexes with Eu(III), Ce(III) and the linear uranyl (UO(2)(2+)) ion were obtained by X-ray crystallographic analysis, and they showed similar coordination behavior to related BTBP complexes. In methanol, the stability constants of the Ln(III) complexes are slightly lower than those of the analogous quadridentate bis-triazine BTBP ligands, while the stability constant for the Yb(III) complex is higher. (1)H NMR titrations and ESI-MS with lanthanide nitrates showed that the ligand forms only 1:1 complexes with Eu(III), Ce(III) and Yb(III), while both 1:1 and 1:2 complexes were formed with La(III) and Y(III) in acetonitrile. A mixture of isomeric chiral 2:2 helical complexes was formed with Cu(I), with a slight preference (1.4:1) for a single directional isomer. In contrast, a 1:1 complex was observed with the larger Ag(I) ion. The ligand was unable to extract Am(III) or Eu(III) from nitric acid solutions into 1-octanol, except in the presence of a synergist at low acidity. The results show that the presence of two outer 1,2,4-triazine rings is required for the efficient extraction and separation of An(III) from Ln(III) by quadridentate N-donor ligands.  相似文献   

14.
The previous literature demonstrates that donor atoms softer than oxygen are effective for separating trivalent lanthanides (Ln(III)) from trivalent actinides (An(III)) (Nash, K.L., in: Gschneider, K.A. Jr., et al. (eds.) Handbook on the Physics and Chemistry of Rare Earths, vol. 18—Lanthanides/Actinides Chemistry, pp. 197–238. Elsevier Science, Amsterdam, 1994). It has also been shown that ligands that “restrict” their donor groups in a favorable geometry, appropriate to the steric demands of the cation, have an increased binding affinity. A series of tetradentate nitrogen containing ligands have been synthesized with increased steric “limits”. The pK a values for these ligands have been determined using potentiometric titration methods and the formation of the colored copper(II) complex has been used as a method to determine ligand partitioning between the organic and aqueous phases. The results for the 2-methylpyridyl-substituted amine ligands are encouraging, but the results for the 2-methylpyridyl-substituted diimines indicate that these ligands are unsuitable for implementation in a solvent extraction system due to hydrolysis.  相似文献   

15.
To improve understanding of aza-complexants in trivalent actinide?Clanthanide separations, a series of tetradentate N-donor ligands have been synthesized and their complexation of americium(III) and neodymium(III) investigated by UV?Cvisible spectrophotometry in methanolic solutions. The six pyridine/alkyl amine/imine ligands are N,N??-bis(2-methylpyridyl)-1,2-diaminoethane, N,N??-bis(2-methylpyridyl)-1,3-diaminopropane, trans-N,N-bis(2-pyridylmethyl)-1,2-diaminocyclohexane (BPMDAC), N,N??-bis(2-pyridylmethyl)piperazine, N,N??-bis-[pyridin-2-ylmethylene]ethane-1,2-diamine, and trans-N,N-bis-([pyridin-2-ylmethylene]-cyclohexane-1,2-diamine. Each ligand has two pyridine groups and two aliphatic amine/imine N-donor atoms arranged with different degrees of preorganization and structural backbone rigidity. Conditional stability constants for the complexes of Am(III) and Nd(III) by these ligands establish the selectivity patterns. The overall selectivity of Am(III) over Nd(III) is similar to that reported for the terdentate bis(dialkyltriazinyl)pyridine molecules. The cyclohexane amine derivative (BPMDAC) is the strongest complexant and shows the highest selectivity for Am(III) over Nd(III) while the imines appear to prefer a bridging arrangement between two cations. These results suggest that this series of ligands could be employed to develop an enhanced actinide(III)?Clanthanide(III) separation system.  相似文献   

16.
Microcapsules enclosing an extractant with strong affinity for Am were prepared by employing a biopolymer gel as an immobilization matrix. A relatively large separation factor between Am and Eu was exhibited by the microcapsule containing of bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301, HA) and alginic acid (HALG). The chromatographic separation of these metal ions was accomplished by gradient elution through the column packed with HA-HALG.  相似文献   

17.
Panesar KS  Singh OV  Tandon SN 《Talanta》1994,41(8):1341-1344
Studies have been carried out on the extraction behavior of some metal ions of the first transition series using bis(2,4,4-trimethylpentyl)dithiophosphinic acid (Cyanex 301) from mineral acid media. The effect of various parameters influencing the extraction such as the nature of the diluent, concentration of the acid and the extractant on the distribution has been investigated. Based on the distribution data some binary separations have been proposed. A flow sheet of a scheme is given for the recovery of manganese free cobalt from a spent catalyst used in the manufacture of poly(ethyleneterepthalate).  相似文献   

18.
A family of compounds based on bis-diglycolamide (bisDGA) estructure has been recently developed to be applied for the trivalent actinides and lanthanides (An(III) and Ln(III)) co-extraction by means of DIAMEX process [1], [2]. It has been shown that these bisDGA compounds are efficient extractants of An(III) and Ln(III) regarding to extraction and loading capacity, as well as it has been proved their stability against hydrolysis and radiolysis [3]. For process development, it is necessary to study their selectivity towards An(III) and Ln(III) in the extraction and back-extraction steps in presence of the other elements, such as fission and activation products (FP and AP), in the high active raffinate (HAR) issued from the PUREX process.  相似文献   

19.
The extraction behavior of Eu(III) has been studied using di(2,4,4-trimethylpentyl)phosphinic acid (DTMPPA, HA) in kerosene. Europium was extracted as Eu(HA2)3 with the extraction constant of 2.0·10–3. This extraction system was applied to the transport of Eu(III) across a DTMPPA liquid membrane supported on porous polytetrafluoroethylene. Europium was quantitatively moved through the liquid membrane containing 0.1M (HA)2 as a mobile carrier from the feed solution of pH above 3 into the product solution of 0.1M HNO3, yielding a concentration factor of ten. The transport rate increased with increasing pH and DTMPPA concentration.  相似文献   

20.
Bistriazinyl-pyridine type ligands are important extracting agents for separating trivalent actinide ions from trivalent lanthanides. The alkyl substituents on the lateral triazine rings have a significant effect on the stability of the ligand against hydrolysis and radiolysis. Furthermore they influence solubility, extraction behaviour and selectivity. TRLFS and extraction studies suggest differences in complexation and extraction behaviour of BTP ligands bearing iso-propyl or n-propyl substituents, respectively. As NMR studies allow insight into the metal-ligand bonding, we conducted NMR studies on a range of 15N-labelled nPrBTP and iPrBTP Ln(III) and Am(III) complexes. Our results show that no strong change in the metal-ligand bonding occurs, thus excluding electronic reasons for differences in complexation behaviour, extraction kinetics and selectivity. This supports mechanistic reasons for the observed differences.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号