首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 576 毫秒
1.
The sorption of radiocadmium on Ca-montmorillonite as a function of contact time, pH, ionic strength, foreign ions, humic acid (HA) and fulvic acid (FA) was studied using batch technique. The results demonstrated that the sorption of Cd(II) was dependent on ionic strength at pH < 9, and was independent of ionic strength at pH > 9. Outer-sphere surface complexation and/or ion exchange were the main mechanism of Cd(II) sorption on Ca-montmorillonite at low pH, whereas the sorption at high pH was mainly dominated via inner-sphere surface complexation. The sorption of Cd(II) on Ca-montmorillonite was dependent on foreign ions at low pH values, but was independent of foreign ions at high pH values. A positive effect of HA/FA on Cd(II) sorption was found at low pH values, whereas a negative effect was observed at high pH values. The thermodynamic parameters (i.e., ??H 0, ??S 0, ??G 0) were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption process of Cd(II) on Ca-montmorillonite was spontaneous and endothermic.  相似文献   

2.
The sorption of radionuclide 63Ni(II) on bentonite/iron oxide magnetic composites was investigated by batch technique under ambient conditions. The effect of contact time, solid content, pH, coexistent electrolyte ions, fulvic acid, and temperature on Ni(II) sorption to bentonite/iron oxide magnetic composites was examined. The results demonstrated that the sorption of Ni(II) was strongly dependent on pH and ionic strength at pH <8.0, and was independent of pH and ionic strength at high pH values. The sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The experimental data were well fitted by Langmuir model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Ni(II) on bentonite/iron oxide magnetic composites was an endothermic and spontaneous processes. The results show that bentonite/iron oxide magnetic composites are promising magnetic materials for the preconcentration and separation of radionickel from aqueous solutions in environmental pollution.  相似文献   

3.
This paper examined the application of attapulgite as an adsorbent for the removal of Pb(II) from heavy metal-contaminated water under various conditions. The sorption results indicated that the sorption of Pb(II) on attapulgite was strongly dependent on ionic strength at pH < 7.0. Outer-sphere surface complexation or ion exchange may be the main sorption mechanism of Pb(II) on attapulgite at low pH values. No drastic difference of Pb(II) sorption was observed at pH 7.0–10.0, and the sorption at pH > 10.0 was mainly dominated by inner-sphere surface complexation. The sorption of Pb(II) on attapulgite was affected by foreign ions in solution at pH < 7.0, and was not affected by foreign ions at pH > 7.0. The thermodynamic parameters (ΔH°, ΔS° and ΔG°) were evaluated from the temperature-dependent sorption isotherms, and the results indicated that the sorption process of Pb(II) on attapulgite was spontaneous and endothermic in nature.  相似文献   

4.
In this work, sorption of Ni(II) from aqueous solution to goethite as a function of various water quality parameters and temperature was investigated. The results indicated that the pseudo-second-order rate equation fitted the kinetic sorption well. The sorption of Ni(II) to goethite was strongly dependent on pH and ionic strength. A positive effect of HA/FA on Ni(II) sorption was found at pH < 8.0, whereas a negative effect was observed at pH > 8.0. The Langmuir, Freundlich, and D-R models were applied to simulate the sorption isotherms at three different temperatures of 293.15 K, 313.15 K and 333.15 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) were calculated from the temperature dependent sorption, and the results indicated that the sorption was endothermic and spontaneous. At low pH, the sorption of Ni(II) was dominated by outer-sphere surface complexation or ion exchange with Na+/H+ on goethite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH.  相似文献   

5.
In this work, a naturally occurring illite was characterized by using FT-IR and XRD technique to determine its surface functional groups and crystal structure. Sorption of 60Co(II) on illite as a function of contact time, pH, ionic strength, foreign ions, humic substances and temperature was studied under ambient condition using batch technique. The results indicated that the sorption of 60Co(II) on illite is strongly affected by pH values (2–9) and ionic strength. A positive effect of humic substances on 60Co(II) sorption was found at pH < 7.0, whereas a negative effect was observed at pH > 7.0. At low pH, the sorption of 60Co(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on illite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 60Co(II) at three different temperatures of 298.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH 0, ΔS 0 and ΔG 0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 60Co(II) on illite was endothermic and spontaneous.  相似文献   

6.
The development of nuclear power releases large amounts of radionuclides into the natural environment. Herein, the sorption of radionuclide 63Ni on bentonite from Gaomiaozi county (Inner Mongolia, China) at different experimental conditions such as pH, contact time, ionic strength, foreign cations and anions, and temperatures were investigated by using batch technique. The results indicated that the sorption of 63Ni on the bentonite was quickly at first contact time and then increased slowly with increasing contact time. The sorption of 63Ni was strongly dependent on ionic strength at low pH values and independent of ionic strength at high pH values. The sorption of 63Ni on bentonite was mainly dominated by outer-sphere surface complexation or ion exchange at low pH values, whereas inner-sphere surface complexation was the main sorption mechanism at high pH values. The Langmuir, Freundlich, and D–R models were applied to simulate the sorption isotherms of 63Ni at three different temperatures, and the thermodynamic parameters (i.e., ΔH°, ΔS° and ΔG°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of 63Ni on bentonite was an endothermic and spontaneous process. Experimental results indicate that the bentonite is a suitable material for the preconcentration and solidification of 63Ni from large volume of solutions in radionickel pollution cleanup.  相似文献   

7.
In this study, natural halloysite nanotubes (HNTs) were applied to remove radiocobalt from wastewaters under various environmental parameters such as contact time, pH, ionic strength, foreign ions and temperature by using batch technique. The results indicated that the sorption of Co(II) on HNTs was dependent on ionic strength at pH < 8.5 and independent of ionic strength at pH > 8.5. Langmuir and Freundlich models were applied to simulate the sorption isotherms of Co(II) at three different temperatures of 293, 313 and 333 K. Langmuir model fitted the sorption isotherms of Co(II) on HNTs better than Freundlich model. The thermodynamic parameters (ΔG 0, ΔS 0 and ΔH 0) calculated from the temperature-dependent sorption isotherms manifested that the sorption of Co(II) on HNTs was an endothermic and spontaneous process. The sorption of Co(II) was dominated by outer-sphere surface complexation or ion exchange at low pH, whereas inner-sphere surface complexation or precipitation was the main sorption mechanism at high pH. The experimental results show that HNTs have good potentialities for cost-effective disposal of cobalt-bearing wastewaters.  相似文献   

8.
MX-80 bentonite was detected using acid-based titration, XRD and FTIR in detail. The sorption behavior of 63Ni(Ⅱ) from aqueous solution to MX-80 bentonite was investigated as a function of solid content, ionic strength and pH by using batch technique. The experimental data of 63Ni(Ⅱ) sorption on MX-80 bentonite was obtained using the diffuse layer model (DLM) with the aid of FITEQL 3.1 program. The results indicated that the sorption of 63Ni(Ⅱ) on MX-80 bentonite was mainly dominated by surface complexation...  相似文献   

9.
Sorption of U(VI) from aqueous solution to Na-attapulgite was investigated at different experimental chemistry conditions by using batch technique. The attapulgite sample was characterized by FTIR and XRD. Sorption of U(VI) on attapulgite was strongly dependent on pH and ionic strength. The sorption of U(VI) on attapulgite increased quickly with rising pH at pH < 6, and decreased with increasing pH at pH > 7. The presence of humic acid (HA) enhanced the sorption of U(VI) on attapulgite obviously at low pH because of the strong complexation of surface adsorbed HA with U(VI) on attapulgite surface. Sorption of U(VI) on attapulgite was mainly dominated by ion exchange and/or outer-sphere surface complexation at low pH values, whereas the sorption was attributed to the inner-sphere surface complexation or precipitation at high pH values. The sorption increased with increasing temperature and the thermodynamic parameters calculated from the temperature dependent sorption isotherms suggested that the sorption of U(VI) on attapulgite was a spontaneous and endothermic process. The results indicate that attapulgite is a very suitable material for the preconcentration of U(VI) ions from large volumes of aqueous solutions.  相似文献   

10.
A novel hierarchically structured γ-MnO2 has been synthesized using a simple chemical reaction between MnSO4 and KMnO4 in aqueous solution without using any templates, surfactants, catalysts, calcination and hydrothermal processes. As an example of potential applications, hierarchically structured γ-MnO2 was used as adsorbent in radionuclide 63Ni(II) treatment, and showed an excellent ability. The effects of pH, ionic strength, temperature, humic acid (HA) and fulvic acid (FA) on the sorption of radionuclide 63Ni(II) to hierarchically structured γ-MnO2 have been investigated by using batch techniques. The results indicated that the sorption of 63Ni(II) on γ-MnO2 is obviously dependent on pH values but independent of ionic strength. The presence of HA/FA strongly enhances the sorption of 63Ni(II) on γ-MnO2 at low pH values, whereas reduces 63Ni(II) sorption at high pH values. The sorption of 63Ni(II) on γ-MnO2 is attributed to inner-sphere surface complexation rather than outer-sphere surface complexation or ion exchange. The thermodynamic parameters (ΔH 0, ΔS 0, ΔG 0) are also calculated from the temperature dependent sorption isotherms, and the results suggest that the sorption of 63Ni(II) on γ-MnO2 is a spontaneous and endothermic process.  相似文献   

11.
Different kinds of clay minerals have been studied extensively in the removal of radionuclides from large volumes of aqueous solutions because of their high sorption capacity. Herein, the Na-montmorillonite was characterized by using XRD and FTIR in detail. The sorption of 63Ni(II) from aqueous solution to montmorillonite as a function of pH, ionic strength, foreign ions, humic substances and temperature was studied by batch technique. The sorption of 63Ni(II) on montmorillonite achieved equilibration quickly. The sorption of 63Ni(II) to montmorillonite was strongly dependent on pH, and dependent on ionic strength at low pH and independent of ionic strength at high pH values. The sorption of 63Ni(II) on montmorillonite was enhanced at low pH in the presence of humic acid (HA), while a negative effect of HA on 63Ni(II) sorption was found at high pH values. At low pH values, the sorption of 63Ni(II) was attributed to outer-sphere surface complexation or ion exchange, whereas the sorption was dominated by inner-sphere surface complexation at high pH values. The montmorillonite sample is a suitable material in the preconcentration of radionuclides from large volumes and the material can be used as backfill material in nuclear waste repository.  相似文献   

12.
The sorption of 63Ni(II) from aqueous solution using ZSM-5 zeolite was investigated by batch technique under ambient conditions. ZSM-5 zeolite was characterized by point of zero net proton charge (PZNPC) titration. The sorption was investigated as a function of shaking time, pH, ionic strength, foreign ions, humic acid (HA), fulvic acid (FA) and temperature. The results indicate that the sorption of 63Ni(II) on ZSM-5 zeolite is strongly dependent on pH. The sorption is dependent on ionic strength at low pH, but independent of ionic strength at high pH values. The presence of HA/FA enhances 63Ni(II) sorption at low pH values, whereas reduces 63Ni(II) sorption at high pH values. The sorption isotherms are simulated by Langmuir model very well. The thermodynamic parameters (i.e., ∆H 0, ∆S 0 and ∆G 0) for the sorption of 63Ni(II) are determined from the temperature dependent sorption isotherms at 293.15, 313.15 and 333.15 K, respectively, and the results indicate that the sorption process of 63Ni(II) on ZSM-5 zeolite is spontaneous and endothermic.  相似文献   

13.
The sorption of Co(II) on Na-attapulgite as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid (FA) and temperature under ambient conditions was studied. The kinetic of Co(II) sorption on Na-attapulgite was described well by pseudo-second-order model. The sorption of Co(II) on Na-attapulgite was strongly dependent on pH and ionic strength. The sorption of Co(II) was mainly dominated by outer-sphere surface complexation and/or ion exchange at low pH, whereas inner-sphere surface complexation or surface precipitation was the main sorption mechanism at high pH values. The presence of FA did not affect Co(II) sorption obviously at pH <7, and a negative effect was observed at pH >7. The Langmuir and Freundlich models were used to simulate the sorption data at different temperatures, and the results indicated that the Langmuir model simulated the data better than the Freundlich isotherm model. The thermodynamic parameters (∆G°, ∆S°, ∆H°) calculated from the temperature-dependent sorption isotherms indicated that the sorption of Co(II) on Na-attapulgite was an endothermic and spontaneous process. The results suggest that the attapulgite sample is a suitable material in the preconcentration and solidification of radiocobalt from large volumes of aqueous solutions.  相似文献   

14.
In this work, hydroxyapatite (HAP) was prepared by aqueous precipitation technique and was characterized by using FT-IR to determine its chemical functional groups. A series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, pH, ionic strength, foreign ions, fulvic acid (FA) and temperature on the sorption behavior of HAP towards radionuclide 109Cd(II). The results indicated that the sorption of 109Cd(II) on HAP was strongly dependent on pH and ionic strength. A positive effect of FA on 109Cd(II) sorption was found at pH <7.0, whereas a negative effect was observed at pH >7.0. The Langmuir, Freundlich and D-R models were used to simulate the sorption isotherms at three different temperatures of 298.15, 323.15 and 343.15 K. The thermodynamic parameters (ΔH0, ΔS0 and ΔG0) calculated from the temperature dependent sorption isotherms indicated that the sorption process of 109Cd(II) on HAP was spontaneous and endothermic. At low pH, the sorption of 109Cd(II) was dominated by outer-sphere surface complexation and ion exchange on HAP surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. From the experimental results, it is possible to conclude that HAP has good potentialities for cost-effective treatments of 109Cd(II)-contaminated wastewaters.  相似文献   

15.
The sorption of Cd(II) from aqueous solution on MnO2 was investigated under ambient conditions. Experiments were carried out as a function of contact time, solid content, pH, ionic strength, foreign ions, fulvic acid and temperature. The results indicated that the sorption of Cd(II) was strongly dependent on pH and ionic strength. At low pH, the sorption of Cd(II) was dominated by outer-sphere surface complexation and ion exchange with Na+/H+ on MnO2 surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin–Radushkevich models were used to simulate the sorption isotherms at three different temperatures. The thermodynamic data (ΔG 0, ΔS 0, ΔH 0) calculated from the temperature dependent sorption isotherms suggested that the sorption of Cd(II) on MnO2 was an spontaneous and endothermic process.  相似文献   

16.
In this paper, the attapulgite-iron oxide magnetic composites were synthesized by coprecipitation method and were characterized by SEM, XRD and FTIR in detail. The characterization results indicated that the iron oxide was successfully formed on the surface of attapulgite. The prepared attapulgite-iron oxide magnetic composites were applied as adsorbents to remove Eu(III) from aqueous solutions by using batch sorption experiments under different experimental conditions. The sorption properties of Eu(III) on bare attapulgite were also performed as comparison. The results indicated that the sorption of Eu(III) on attapulgite-iron oxide magnetic composites was strongly dependent on pH and temperature. The attapulgite-iron oxide magnetic composites can be separated from aqueous solutions using magnetic separation method in large scale. At low pH values, the sorption of Eu(III) was influenced by ionic strength and pH obviously, while the sorption of Eu(III) was not affected by ionic strength at high pH values. The sorption of Eu(III) was dominated by ion exchange or outer-sphere surface complexation at low pH values, and mainly by inner-sphere surface complexation at high pH values. The thermodynamic parameters (i.e., ?G °, ?S °, ?H °) calculated from the temperature dependent sorption isotherms indicated that the sorption of Eu(III) on attapulgite-iron oxide magnetic composites was an endothermic and spontaneous process. Although the sorption capacities of Eu(III) on attapulgite-iron oxide magnetic composites were a little lower than those of Eu(III) on bare attapulgite, the magnetic separation in large scale is suitable for the application of the magnetic composites in the preconcentration of Eu(III) from large volumes of aqueous solutions in possible real applications.  相似文献   

17.
In this work, a series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, pH, ionic strength, coexisting electrolyte ions, humic substances and temperature on the sorption behavior of illite towards 64Cu(II). The results indicated that 64Cu(II) sorption on illite achieved equilibrium quickly. The pH- and ionic strength-dependent sorption suggested that 64Cu(II) sorption on illite was dominated by ion exchange or outer-sphere surface complexation at pH < 7, whereas the pH-dependent and ionic strength-independent sorption indicated that the sorption process was mainly attributed to inner-sphere surface complexation at pH > 7. A positive effect of humic substances on 64Cu(II) sorption was found at pH < 6.5, whereas a negative effect was observed at pH > 6.5. The Langmuir and Freundlich models were used to simulate the sorption isotherms of 64Cu(II) at three different temperatures of 293, 313, and 333 K. The thermodynamic parameters (ΔH 0, ΔS 0, and ΔG 0) of 64Cu(II) sorption on illite were calculated from the temperature dependent sorption isotherms, and the results indicated that the sorption of 64Cu(II) on illite was endothermic and spontaneous. From the experimental results, it is possible to conclude that illite has good potentialities for cost-effective treatments of 64Cu(II)-contaminated wastewaters.  相似文献   

18.
The interaction of U(VI) with Na-attapulgite was studied by using batch technique at different experimental conditions. The effect of contact time, solid content, pH, ionic strength and temperature on the sorption of U(VI) onto Na-attapulgite in the presence and absence of humic acid was also investigated. The results showed that the sorption of U(VI) on Na-attapulgite achieved sorption equilibrium quickly. Sorption of U(VI) on Na-attapulgite increased quickly with increasing pH at pH < 6.5, and then decreased with pH increasing at pH > 6.5. The sorption curves were shifted to left in low NaClO4 solutions as compared those in high NaClO4 solutions. The sorption was strongly dependent on pH and ionic strength. The sorption was dominated by ion exchange or outer-sphere surface complexation at low pH values, and by inner-sphere surface complexation or surface precipitation at high pH values. The thermodynamic parameters (i.e., ΔH 0, ΔS 0, and ΔG 0) for the sorption of U(VI) were calculated from the temperature dependent sorption isotherms, and the results suggested that the sorption reaction was an endothermic and spontaneous process. The Na-attapulgite is a suitable material in the removal and preconcentration of U(VI) from large volumes of aqueous solutions in nuclear waste management.  相似文献   

19.
The surface property of attapulgite was investigated by N2-BET surface area and zeta potential analysis in this paper. Solution pH had a remarkable effect on the sorption process, indicated an inner-sphere complexation. Humic acid (HA) in the solution enhanced U(VI) sorption significantly at pH?<?5.0, while decreased U(VI) sorption obviously at pH?>?9.0. The characteristic fluorescence changes of HA indicated that a strong chemical reaction occurred between the functional groups in HA and UO22+. The sorption was a spontaneous and endothermic process with increased entropy, and the increase in temperature would benefit the sorption.  相似文献   

20.
In this article, a series of batch experiments were carried out to investigate the effect of various environmental factors such as contact time, solid content, pH, ionic strength, foreign ions, temperature and coexisting humic acid on the sorption behavior radionuclide 60Co(II) on illite. The results indicated that the sorption of Co(II) was strongly dependent on pH, ionic strength and temperature. At low pH, the sorption was dominated by outer-sphere surface complexation and ion exchange on illite surfaces, whereas inner-sphere surface complexation was the main sorption mechanism at high pH. The Langmuir, Freundlich and Dubinin-Radushkevich (D-R) models were used to simulate the sorption isotherms at three different temperatures of 303.15, 323.15 and 343.15 K. The thermodynamic data (∆G 0, ∆S 0, ∆H 0) were calculated from the temperature dependent sorption isotherms and the results suggested that the sorption process of Co(II) on illite was an endothermic and spontaneous process. The sorption test revealed that the illite can be as a cost-effective adsorbent suitable for pre-concentration of Co(II) from large volumes of aqueous solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号