首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this work, the producing of a biodegradable poly(l-lactide) (PLA)/poly(ethylene glycol) (PEG) microcapsule by emulsion solvent evaporation method was investigated. The effect of PEG segments added to the PLA microcapsules on the degradation, size distribution, and release behavior was studied. According to the results, PLA/PEG copolymer was more hydrophilic than PLA homopolymer, and with lower glass transition temperature. The surface of PLA/PEG microcapsules was not as smooth as that of PLA microcapsules, the mean diameters of prepared PLA and PLA/PEG microcapsules were 40 and 57 microm, respectively. And spherical forms were observed by the image analyzer and the scanning electron microscope (SEM). Drug release from microcapsules was affected by the properties of PLA/PEG copolymers determined by UV-vis spectra. It was found that the drug release rates of the microcapsules were significantly increased with adding of PEG, which explained by increasing hydrophilic groups.  相似文献   

2.
Amphiphilic diblock copolymers composed of poly(ethylene glycol) (PEG) and poly(l-leucine) (PLeu) with mannose at the chain end of PEG were synthesized by a combination of ring-opening polymerization (ROP) and click chemistry. First, an α-azido, ω-amino PEG (N(3)-PEG-NH(2)) was synthesized and converted to the corresponding amine hydrochloride (N(3)-PEG-NH(2)·HCl), which was used as a macroinitiator to initiate the ROP of L-leucine-N-carboxyanhydride (Leu-NCA), yielding three amphiphilic block copolymers with different chain lengths of PLeu (N(3)-PEG-b-PLeu). Then, click chemistry of the alkynyl mannose with N(3)-PEG-b-PLeu anchored a mannose moiety to the PEG chain end of the copolymer. The self-assembly behavior of these copolymers in water was investigated using transmission electron microscopy (TEM), laser light scattering (LLS) and circular dichroism (CD). Depending on the copolymer composition and the initial concentration of the copolymer in organic solvent, different morphologies (e.g. spherical micelle, wormlike micelle) were observed. The aggregation behavior was demonstrated to be controlled by secondary structure formation and the hydrophobic interactions of the PLeu segments. With mannose moieties on the surface of the aggregates, these aggregates could bind reversibly the lectin Concanavalin A (Con A).  相似文献   

3.
The carboxyl function of pepstatin has been coupled, through an amide bond, to methoxypoly(ethylene glycol) (5 kDa), to which an amino function had been previously grafted. The mPEG-pepstatin conjugate inhibits hog pepsin (aspartic proteinase) in vitro as pepstatin itself, however, with a 400 times higher apparent Ki. The conjugate apparently does not inhibit proteinases belonging to other proteinase families such as serine (trypsin, carboxypeptidase Y), cysteine (Papaya proteinase III), or metallo (collagenase) proteinases.  相似文献   

4.
Poly(ethylene glycol methyl ether)-b-poly(ethylenimine hydrochloride) was characterized using potentiometric and viscosimetric titration methods. The average chemical compositions of the polyamine hydrochloride salts estimated by the acid-base titration,1H-NMR, and elemental analysis were compared. The apparent dissociation constant, pK, and the inherent viscosity of the polyamine hydrochloride were found to be highly dependent on the degree of neutralization. Very strong coulombic interactions among the charged sites were observed at low pH's for this polymer.  相似文献   

5.
A set of amphiphilic poly(ethylene glycol)-b-poly(ethylene brassylate) (PEG-b-PEB) copolymers based on the PEB hydrophobic block was first synthesized by ring-opening polymerization of ethylene brassylate with an organic catalyst. The EB/PEGmolar ratios and reaction times were adjusted to achieve different chain lengths of PEB. Block copolymers that were characterized by 1H NMR and GPC could selfassemble into multimorphological aggregates in aqueous solution, which were characterized by DLS and TEM. The hydrophobic doxorubicin (DOX) was chosen as a drug model and successfully encapsulated into the nanoparticles. The release kinetics of DOX were investigated.  相似文献   

6.
Amphiphilic block copolymers composed of D,L-lactide, trimethylene carbonate and the methoxy poly (ethylene glycol) (PETLA) were synthesized with ringopening copolymerization. Studies on the micellization and drug-controlled release behavior of PETLA were performed. Both of the copolymers and the micelles were characterized with the methods of 1H nuclear magnetic resonance (1H-NMR), fluorescence spectroscopy, gel permeation chromatographic (GPC), dynamic light scattering (DLS), transmission electron microscopy (TEM) and ultraviolet-visible spectroscopy (UV). As a result, the critical micelle concentration of the copolymer was decreased with the increase of the hydrophobic chain length. DLS results indicated the diameters of the micelle were increased with increasing hydrophobic length. TEM photographs illustrated that micelles MT1 were regularly spherical with the diameter from 30 nm to 40 nm. Taking 9-nitro-20(S)-camptothecin (9-NC) for the model drug, the release profiles in vitro show that the release behavior from micelles was controllable and nearly in zero order after the initial burst release. __________ Translated from Acta Polymerica Sinica, 2008, 2 (in Chinese)  相似文献   

7.
Five general routes for the preparation of polyoxyethylene [generally referred to as poly(ethylene glycol) or PEG] derivatives are described. These routes are (1) nucleophilic displacements with the alkoxide of PEG, (2) nucleophilic displacement on PEG–tosylate, –mesylate, or –bromide, (3) reductive amination of PEG–aldehyde, (4) reductive amination of PEG–amine, and (5) nucleophilic displacements on the s-triazine derivatives prepared from s-triazine trichloride (cyanuric chloride) and PEG. Eighteen derivatives are prepared and potential applications to catalysis, cell purifications, and other areas are discussed briefly.  相似文献   

8.
Poly(ethylene glycol) grafted poly(L -lactide) was prepared by ring opening polymerization of L -lactide and epoxy-terminated poly(ethylene glycol) methyl ether (PEGME). Stannous octoate and Al(Et)3·0.5 H2O were tested as polymerization catalysts, and Al(Et)3·0.5 H2O was found to be more effective for the ring-opening of the epoxy group of the modified PEGME monomer. The synthesized polymers were characterized by NMR and the efficiency of the incorporation of epoxy-terminated PEGME in the copolymer was determined.  相似文献   

9.
Pyrene-loaded biodegradable polymer nanoparticles were prepared by incorporating pyrene into the polymer nanoparticles formulated from amphiphilic diblock copolymer, methoxy poly(ethylene glycol)–poly(lactic acid) (MePEG–PLA). Their morphological structure and physical properties were characterized by nuclear magnetic resonance (NMR), dynamic light scattering, fluorescence spectroscopy, transmission electronic microscopy and zeta potential measurements. Further, MePEG–PLA nanoparticles containing pyrene as fluorescent marker were administered intranasally to rats, and the distribution of nanoparticles in the nasal mucosa and the olfactory bulb were visualized by fluorescence microscopy. NMR results confirmed that MePEG–PLA copolymer can form nanoparticles in water, and hydrophilic PEG chains were located on the surface of the nanoparticles. The particle size, zeta potential and pyrene loading efficiency of MePEG–PLA nanoparticles were dependent on the PLA block content in the copolymer. Following nasal administration, the absorption of nanoparticles across the epithelium was rapid, with fluorescence observed in the olfactory bulb at 5 min, and a higher level of fluorescence persisted in the olfactory mucosa than that in the respiratory mucosa. These results show that pyrene could serve as a useful fluorescence probe for incorporation into polymer nanoparticles to study tissue distribution and MePEG–PLA nanoparticles might have a great potential as carriers of hydrophobic drugs.  相似文献   

10.
以2,2-二甲氧基-2-苯基苯乙酮(DMPA)为引发剂,将四臂端丙烯酸酯聚对二氧环己酮(PPDO-4AC)和聚乙二醇双丙烯酸酯(PEG-DA)经紫外光照射制得PPDO/PEG交联薄膜.研究了光照时间和DMPA用量对PPDO/PEG交联薄膜凝胶含量的影响.DSC研究表明共聚物中两组分的相容性较好,Tg随着共聚物中PEG链...  相似文献   

11.
12.
Linear and branched poly(ethylene terephthalate) (PET) copolymers with polyethylene glycol) (PEG) methyl ether (700 or 2000 g/mol) end groups were synthesized using conventional melt polymerization. DSC analysis demonstrated that low levels of PEG end groups accelerated PET crystallization. The incorporated PEG end groups also decreased the crystallization temperature of PET dramatically, and copolymers with a high content of PEG (>17.6 wt%) were able to crystallize at room temperature. Rheological analysis demonstrated that the presence of PEG end groups effectively decreased the melt viscosities and facilitated melt processing. XPS and ATR-FTIR revealed that the PEG end groups tended to aggregate on the surface, and the surface of compression molded films containing 34.0 wt% PEG were PEG rich (85 wt% PEG). PEG end-capped PET (34.0 wt% PEG) and PET films were immersed into a fibrinogen solution (0.7 mg/mL BSA) for 72 h to investigate the propensity for protein adhesion. XPS demonstrated that the concentration of nitrogen (1.05%) on the surface of PEG endcapped PET film was statistically lower than PET (7.67%). SEM analysis was consistent with XPS results, and revealed the presence of adsorbed protein on the surface of PET films.  相似文献   

13.
In this study a series of chemically crosslinked chitosan/poly(ethylene glycol) (CS/PEG) composite membranes were prepared with PEG as a crosslinking reagent other than an additional blend. First, carboxyl-eapped poly(ethylene glycol) (HOOC-PEG-COOH) was synthesized. Dense CS/PEG composite membranes were then prepared by casting/evaporation of CS and HOOC-PEG-COOH mixture in acetic acid solution. Chitosan was chemically crosslinked due to the amidation between the carboxyl in HOOC-PEG-COOH and the amino in chitosan under heating, as confirmed by FTIR analysis. The hydrophilicity, water-resistance and mechanical properties of pure and crosslinked chitosan membranes were characterized, respectively. The results of water contact angle and water absorption showed that the hydrophilicity of chitosan membranes could be significantly improved, while no significant difference of weight loss between pure chitosan membranes and crosslinked ones was detected, indicating that composite membranes with amidation crosslinking possess excellent water resistanance ability. Moreover, the tensile strength of chitosan membranes could be significantly enhanced with the addition of certain amount of HOOC-PEG-COOH crosslinker, while the elongation at break didn't degrade at the same time. Additionally, the results of swelling behaviors in water at different pH suggested that the composite membranes were pH sensitive.  相似文献   

14.
Multiple myeloma(MM) is the second most common hematological tumor characterized by the proliferation of monoclonal plasma cells. Melphalan(MEL) is commonly used in the treatment of MM and is especially essential for patients undergoing autologous stem cell transplantation(ASCT). Although many drugs for MM have been developed in recent years, chemotherapy followed by ASCT remains the optimal option. Melphalan, the backbone of the conditioning regimen, brings severe toxicities at a high dose. Nan...  相似文献   

15.
Crystalline-crystalline poly (3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) and poly (ethylene glycol) (PEG) block copolymers (PHEGs) were synthesized by telechelic hydroxylated PHBV2000 and PEG with different number-average molecular weights. The synthesized PHEGs were analyzed using gel permeation chromatography and proton nuclear magnetic resonance. The cooling curves of the differential scanning calorimetry showed that the range of the melt-crystallization temperature of the PEG and PHBV blocks in the PHEGs partially overlapped. The spherulite of each PEG block and each PHBV block in the PHEGs crystallizes individually, but nucleated in the same site to form a concentric spherulite. The observations of the hot-stage polarized microscope (HSPM) showed that the first spherulite growth acted as a template for the later spherulite growth in the PHBV-b-PEG concentric spherulite. The spherulite growth rate of individual spherulite from the PEG block and PHBV block in PHEGs depends on the crystallization environment. The evolution of concentric spherulites in PHEGs at different crystallization conditions was studied in this study.  相似文献   

16.
Anionic copolymerization and Williamson reaction of PS-co-PD (d-isoprene (I) or butadiene (B)) prepolymers (bearing hydroxyl or benzyl bromide end groups) and ethylene oxide or mono-methyl poly(ethylene glycol) (PEGs) were used to prepare a series of PS-co-PD-b-PEO amphiphilic copolymers. Investigations on the association and self-assembly of copolymers in dilute organic and in mixed organic/water solutions have been carried out both by light scattering and microscopic measurements. Nanosized and microsized species have been observed. Their shape depends on the hydrophobic/hydrophilic blocks ratio as well as on the solvent composition. Attempts on stabilizing the morphology of the aggregates/micelles have been made by UV-induced cross-linking of diene entities. It has been found that in some experiments, the stabilization proceeds throughout morphological rearrangement determined by the solvent nature and by the cross-linking protocol.  相似文献   

17.
Pluronic poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) (PEO-PPO-PEO) block copolymers are grafted with poly(vinyl pyrrolidone) by free radical polymerization of vinyl pyrrolidone with simultaneous chain transfer to the Pluronic in dioxane. This modified polymer has both thermal responsiveness and remarkable capacity to interact with a wide variety of hydrophilic and hydrophobic pharmaceutical agents which is very attractive for medical applications. The chemical structure of the graft copolymers was characterized by FTIR and 1H NMR spectroscopy. Polymerization conditions such as initiators, feed ratio, and reaction times are studied to obtain the ideal graft copolymer.  相似文献   

18.
A new series of segmented copolymers were synthesized from poly(ethylene terephthalate) (PET) oligomers and poly(ethylene glycol) (PEG) by a two‐step solution polymerization reaction. PET oligomers were obtained by glycolysis depolymerization. Structural features were defined by infrared and nuclear magnetic resonance (NMR) spectroscopy. The copolymer composition was calculated via 1H NMR spectroscopy. The content of soft PEG segments was higher than that of hard PET segments. A single glass‐transition temperature was detected for all the synthesized segmented copolymers. This observation was found to be independent of the initial PET‐to‐PEG molar ratio. The molar masses of the copolymers were determined by gel permeation chromatography (GPC). © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4448–4457, 2004  相似文献   

19.
Exenatide (synthetic exendin-4), a 39-amino acid peptide, was encapsulated in poly(DL-lactic-co-glycolic acid) (PLGA) microspheres as a sustained release delivery system for the therapy of type 2 diabetes mellitus. The microspheres were prepared by a double-emulsion solvent evaporation method and the particle size, surface morphology, drug encapsulation efficiency, in vitro release profiles and in vivo hypoglycemic activity were evaluated. The results indicated that the morphology of the exenatide PLGA microspheres presented as a spherical shape with smooth surface, and the particle sizes distributed from 5.8 to 13.6 μm. The drug encapsulation efficiency tested by micro-bicinchoninic acid (BCA) assay was influenced by certain parameters such as inner and outer aqueous phase volume, PLGA concentration in oil phase, polyvinyl alcohol (PVA) concentrations in outer aqueous phase. Moreover, in vitro release behaviors were also affected by some parameters such as polymer type, PLGA molecular, internal aqueous phase volume, PLGA concentration. The pharmacodynamics in streptozotocin (STZ)-induced diabetic mice suggested that, exenatide microspheres have a significant hypoglycemic activity within one month, and its controlling of plasma glucose was similar to that of exenatide solution injected twice daily with identical exenatide amount. In conclusion, this microsphere could be a well sustained delivery system for exenatide to treat type 2 diabetes mellitus.  相似文献   

20.
Methods described in the literature are inadequate for the preparation of pure polyethylene glycol (PEG) tosylate. Therefore an improved method is presented. The hydroxyl groups on PEG can be quantitatively converted into the tosylate and isolated from the reaction medium free from impurities with no chain cleavage or reduction in molecular weight. 1,2-Di(N-phenyl 2-aminoethoxy) ethane, α,ω-di(N-phenyl 2-aminoethyl) poly(oxyethylene), and α,ω-di(N-phenyl, N-benzyl 2-aminoethyl) poly(oxyethylene) were prepared from the tosylates of tri- and poly(ethylene glycol)s and the corresponding primary and secondary aromatic amines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号