首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 22 毫秒
1.
Summary The European policy on energy focus on the search for alternative and renewable sources of energy where forest biomass plays a significant role. In this article, calorific values of different kinds of forest residues (leaves, thin branches, barks, etc.) are reported. These values were measured by combustion bomb calorimetry with the objective of understanding, through different risk indices, the behaviour of forest waste in the case of wildfires, and also to study the use of forest residues as raw materials to be used as energy sources. The study was complemented with determination of elemental analysis, flammability using a standard epiradiator, thermodegradation analysis, and different mechanical tests trying to get relationships between thermal behaviour and some physical properties. The study was carried out on Eucalyptus globulus Labill and Pinus pinaster Aiton, because these forest formations have both high economical and ecological interest in Galicia (NW Spain).  相似文献   

2.
Conifers, which are the most abundant biomass species in Nordic countries, USA, Canada and Russia, exhibit strong resistance towards depolymerization by cellulolytic enzymes. At present, it is still not possible to isolate a single structural feature which would govern the rate and degree of enzymatic hydrolysis. On the other hand, the forest residues alone represent an important potential for biochemical production of biofuels. In this study, the effect of substrate properties on the enzymatic hydrolysis of softwood was studied. Stem wood spruce chips were fractionated by SO2–ethanol–water (SEW) treatment to produce pulps of varying composition by applying different operating conditions. The SEW technology efficiently fractionates different types of lignocellulosic biomass by rapidly dissolving hemicelluloses and lignin. Cellulose remains fully in the solid residue which is then treated by enzymes to release glucose. The differences in enzymatic digestibility of the spruce SEW pulp fibers were interpreted in terms of their chemical and physical characteristics. A strong correlation between the residual lignin content of SEW pulp and enzymatic digestibility was observed whereas cellulose degree of polymerization and hemicellulose content of pulp were not as important. For the pulps containing about 1.5 % (w/w) lignin, 90 % enzymatic digestibility was achieved at 10 FPU enzyme charge and 24 h of hydrolysis time.  相似文献   

3.
With the depletion of crude oil reserves, the ever-increasing global energy consumption encourages the efforts to find alternative renewable sources for production of biofuels and value-added chemicals. The conversions of lignocellulosic biomass into biofuels and commodity chemicals via the biotechnological pathway have been the recent trend. Specifically, these products can be obtained through fermentation of reducing sugars, which are the main but basic derivatives from the biomass. In order to overcome the recalcitrant structure of the biomass for effective reducing sugar recovery, a pretreatment stage is normally required. Currently, one of the most novel forms of biomass pretreatment is using energy irradiation methods such as electron beam, gamma ray, pulsed electrical field, microwave and ultrasound. In general, these technologies are often used together with other more conventional chemical and/or biological pretreatment techniques for enhancing sugar recovery. Nevertheless, energy irradiation offers significant improvement in terms of possible cost reduction opportunities and reduced toxicity. Hence, this review highlights the recent studies of using energy irradiation for pretreating biomass as well as the industrial applications of reducing sugars in biotechnological, chemical and fuel sectors. In short, more research needs to be done at the scientific, engineering and economic levels to make energy irradiation one of the front runners in the field of biomass pretreatment.  相似文献   

4.
The Amazonian rain forest is the source of several numbers of species in the world, some of those vegetal species have been carried to different places due to their utility. One of those species is the Thehobroma grandiflorum, pulp and seeds of which have several usages in the food industry, but the shell has no extensive use. One of the possibilities due to the nature of the material is the pyrolysis process for obtaining valuable products. Thermal analysis was studied for the biomass thermochemical conversion process under TG/MS techniques. Three different heating rates were used for the thermochemical process. A variety of hydrocarbon and oxygenated products with industrial importance were obtained. The kinetics of the evolved species was studied under three different models. DAEM model fit the thermogravimetric data with good agreement. The parameters obtained for the model agreed with the studied intensities of the MS data. Those ones that did not fit were due to possible gas-phase reactions between the compounds obtained.  相似文献   

5.
The annual photosynthesis on the Earth exceeds the anthropogenic CO2 production. This suggests an energetic use of biomass and has greatly promoted the development of biofuels. In many cases, however, the use of biofuels is breaking the rules of sustainability. To meet the world's energy demand from biomass would require the total available agricultural land. This insight has a critical plate or tank discussion triggered. Energetically and environmentally more efficient than the use of biofuels would be the cultivation of fast‐growing timber and its direct use in coal power plants for electricity production. By far the most efficient use of solar energy is provided by photovoltaic and solar heat use. Because of their high energy density liquid second‐generation biofuels will be applied also in future in such cases where electrical mobility has its limits.  相似文献   

6.
With the world’s focus on rapidly deploying second generation biofuels technologies, there exists today a good deal of interest in how yields, economics, and environmental impacts of the various conversion processes of lignocellulosic biomass to transportation fuels compare. Although there is a good deal of information regarding these conversion processes, this information is typically very difficult to use on a comparison basis because different underlying assumptions, such as feedstock costs, plant size, co-product credits or assumed state of technology, have been utilized. In this study, a rigorous comparison of different biomass to transportation fuels conversion processes was performed with standard underlying economic and environmental assumptions so that exact comparisons can be made. This study looked at promising second-generation conversion processes utilizing biochemical and thermochemical gasification technologies on both a current and an achievable state of technology in 2012. The fundamental finding of this study is that although the biochemical and thermochemical processes to ethanol analyzed have their individual strengths and weaknesses, the two processes have very comparable yields, economics, and environmental impacts. Hence, this study concludes that based on this analysis there is not a distinct economic or environmental impact difference between biochemical and thermochemical gasification processes for second generation ethanol production.  相似文献   

7.
Achieving the EU 2030 vision of a 15% minimum amount of biofuels utilized in the road transportation require more research on biofuel production from biomass feedstock. To this end, this review study examines the use of green, deep eutectic solvents and direct transesterification approaches for biomass conversion to biofuels. Next, biogas production from anaerobic co-digestion of microalgae biomass is presented. Lastly, the effect of operating conditions, as well as advantages and limitations of several biomass conversion techniques are outlined. Of note, this study presents promising microalgae conversion processes which could be progressed are the use of bio-based solvents and supercritical fluids for biodiesel production, hydrothermal liquefaction for biogas production, microwave-induced pyrolysis for syngas production, and ultrasound/microwave enhanced extraction for bio-oil production. These are based on the possibility of high yield and process economics. We have also enumerated knowledge gaps needed to propel future studies.  相似文献   

8.
A wide variety of organic residues may be used as energy source such as anaerobic sludge from wastewater treatment systems. However, due to inherent differences in composition, the proper characterization of these biomasses is essential to support their reuse through any conversion process. The aim of this study was the employment of thermal analysis techniques (TG/DTG and DTA) to perform the characterization of anaerobic sludges from different wastewater treatment plants (industrial and municipal), which were further applied for biological production of H2. The different profiles observed through thermal characterization support the application of these residues as inocula, confirming their potential for H2 production, while demonstrating the main causes for the different yields obtained (mol H2 mol?1 sucrose): 0.9 from sludge of brewery industry and 2.0 from sludge of municipal wastewater treatment plant, corresponding to the overall yields of 10.8 and 25%, respectively. These results confirm the versatility of thermal analysis techniques for biomass characterization, focused on its application for power generation. It is urgent to adopt more sustainable and cost-effective solutions for their management, considering a large amount of residues daily generated in both treatment processes addressed; therefore, biohydrogen production by anaerobic digestion may be a promising alternative for the reuse of both residues as it promotes their transformation from costly and potentially polluting waste into clean and renewable energy sources. The development of this anaerobic process is even more attractive in countries as Brazil, where the weather conditions are naturally favorable.  相似文献   

9.
High reliance on crude oil for energy consumption results in the urgent need to explore and develop alternative renewable sources. One of the most promising routes is the transformation of biomass into biofuels and chemicals. The introduction of deep eutectic solvents in 2004 received a considerable amount of attention across different research fields, particularly in biomass processing. The effectiveness of deep eutectic solvents in breaking down the recalcitrant structure in biomass highlights its impact on the transformation of biomass into various value-added products. In addition, deep eutectic solvents are widely regarded as promising “green” solvents due to their low cost, low toxicity, and biodegradable properties. In this paper, some background information on lignocellulosic biomass and deep eutectic solvents is given. Furthermore, the roles of deep eutectic solvents in biomass processing are discussed, focusing on the impacts of deep eutectic solvents on the selectivity of chemical processes and dissolution of biomass. This review also highlights the advantages and limitations of deep eutectic solvents associated with their usage in biomass valorization.  相似文献   

10.
A review of studies of biomass potential in the United States finds a wide variation in the estimates. A number of specific policy-relevant questions about the potential of biofuels in the United States are answered. A recently published global analysis of the potential conflict between land needed for bioenergy and land needed for food is extended to the situation in the United States. A renewable energy supply scenario, capable of meeting the 2001 US energy demand, indicates that there is enough land to support a renewable energy system but that the utilization of biomass would be limited by its land requirement.  相似文献   

11.

The dependence of oil and its consequent commercial fluctuation make researchers to seek viable alternatives for their gradual replacement. The present work aims to evaluate the production of biofuels from the slow pyrolysis of the Syzygium malaccense biomass (Malay Apple) through thermogravimetric analysis (TGA-DTG), Fraser-Suzuki deconvolution and chemometric tools of multivariate analysis. Three chemical treatments (sodium hydroxide, sulfuric acid and phosphoric acid) were evaluated, as well as the variation in the heating rate and the consequent effects on the pyrolysis of biomass for the production of biofuels, totaling 16 pyrolysis routes (including the use of biomass no treatment). In the obtained data, multivariate analysis tools were used, looking for groups that presented favorable characteristics for the production of quality biofuels. Heatmap, k-means and SOM analysis indicated the routes that use phosphoric acid treatment and heating rates of 10 or 15 °C/min (Jap10 and Jap15, respectively) as relevant, because they have low lignin contents and high gaseous cellulose and hemicellulose contents.

  相似文献   

12.
Corn stover, the above-ground, non-grain portion of the crop, is a large, currently available source of biomass that potentially could be collected as a biofuels feedstock. Biomass conversion process economics are directly affected by the overall biochemical conversion yield, which is assumed to be proportional to the carbohydrate content of the feedstock materials used in the process. Variability in the feedstock carbohydrate levels affects the maximum theoretical biofuels yield and may influence the optimum pretreatment or saccharification conditions. The aim of this study is to assess the extent to which commercial hybrid corn stover composition varies and begin to partition the variation among genetic, environmental, or annual influences. A rapid compositional analysis method using near-infrared spectroscopy/partial least squares multivariate modeling (NIR/PLS) was used to evaluate compositional variation among 508 commercial hybrid corn stover samples collected from 47 sites in eight Corn Belt states after the 2001, 2002, and 2003 harvests. The major components of the corn stover, reported as average (standard deviation) % dry weight, whole biomass basis, were glucan 31.9 (2.0), xylan 18.9 (1.3), solubles composite 17.9 (4.1), and lignin (corrected for protein) 13.3 (1.1). We observed wide variability in the major corn stover components. Much of the variation observed in the structural components (on a whole biomass basis) is due to the large variation found in the soluble components. Analysis of variance (ANOVA) showed that the harvest year had the strongest effect on corn stover compositional variation, followed by location and then variety. The NIR/PLS rapid analysis method used here is well suited to testing large numbers of samples, as tested in this study, and will support feedstock improvement and biofuels process research.  相似文献   

13.
As petroleum prices continue to increase, it is likely that biofuels will play an ever-increasing role in our energy future. The processing of biomass-derived feedstocks (including cellulosic, starch- and sugar-derived biomass, and vegetable fats) by catalytic cracking and hydrotreating is a promising alternative for the future to produce biofuels, and the existing infrastructure of petroleum refineries is well-suited for the production of biofuels, allowing us to rapidly transition to a more sustainable economy without large capital investments for new reaction equipment. This Review discusses the chemistry, catalysts, and challenges involved in the production of biofuels.  相似文献   

14.
Empty palm fruit bunch fiber (EPFBF), a readily available cellulosic biomass from palm processing facilities, is investigated as a potential carbohydrate source for cellulosic ethanol production. This feedstock was pretreated using ammonia fiber expansion (AFEX) and enzymatically hydrolyzed. The best tested AFEX conditions were at 135 °C, 45 min retention time, water to dry biomass loading of 1:1 (weight ratio), and ammonia to dry biomass loading of 1:1 (weight ratio). The particle size of the pretreated biomass was reduced post-AFEX. The optimized enzyme formulation consists of Accellerase (84 μL/g biomass), Multifect Xylanase (31 μL/g biomass), and Multifect Pectinase (24 μL/g biomass). This mixture achieved close to 90% of the total maximum yield within 72 h of enzymatic hydrolysis. Fermentation on the water extract of this biomass affirms that nutrients solely from the pretreated EPFBF can support yeast growth for complete glucose fermentation. These results suggest that AFEX-treated EPFBF can be used for cellulosic biofuels production because biomass recalcitrance has been overcome without reducing the fermentability of the pretreated materials.  相似文献   

15.
Sustainably produced biofuels, especially when they are derived from lignocellulosic biomass, are being discussed intensively for future ground transportation. Traditionally, research activities focus on the synthesis process, while leaving their combustion properties to be evaluated by a different community. This Review adopts an integrative view of engine combustion and fuel synthesis, focusing on chemical aspects as the common denominator. It will be demonstrated that a fundamental understanding of the combustion process can be instrumental to derive design criteria for the molecular structure of fuel candidates, which can then be targets for the analysis of synthetic pathways and the development of catalytic production routes. With such an integrative approach to fuel design, it will be possible to improve systematically the entire system, spanning biomass feedstock, conversion process, fuel, engine, and pollutants with a view to improve the carbon footprint, increase efficiency, and reduce emissions.  相似文献   

16.
Thermogravimetric studies provide the basis for qualification of materials and suitability of biomass fuels and fuels formed from waste to convert them into fuel gas generated in the generator process. The paper presents the results of the analysis of thermal decomposition (thermogravimetric research) of fuel from waste, sewage sludge and wastes from the agro-food: potato pulp and rapeseed meal. Studies have shown how some biofuels and fuel formed from waste reach the semi-coke and coke structure, which is important later, in modeling industry degassing process. The most effective seems to be using rapeseed meal in generator process, since the thermal decomposition occurs in the form of transformation in the temperature range 200?C500?°C. On the basis of quantity analysis of gaseous transformation products from the above mentioned transformations, the calorific value of after process gases has been calculated. The highest calorific value is represented by a gas resulting from rapeseed meal pyrolysis ~10,040?kJ/Nm3. The solid residue obtained by dry decomposition of potato pulp has the highest energy value when compared with products from other fuels.  相似文献   

17.
The combined analytical methods of thermal analysis and mass spectrometry have been applied in form of a newly developed prototype of a thermogravimetry — single photon ionisation time-of-flight mass spectrometer coupling (TG-SPI-TOFMS) to investigate the molecular patterns of evolved gases from several biomass samples as well as a crude oil sample. Single photon ionization (SPI) was conducted by means of a novel electron beam pumped argon excimer lamp (EBEL) as photon source. With SPI-TOFMS various lignin decomposition products such as guaiacol, syringol and coniferyl alcohol could be monitored. Furthermore, SPI allows the detection of aliphatic hydrocarbons, mainly alkenes, carbonylic compounds such as acetone, and furan derivatives such as furfuryl alcohol and hydroxymethylfurfural. More alkaline biomass such as coarse colza meal show intense signals from nitrogen containing substances such as (iso-)propylamine and pyrrole. Thermal degradation of crude oil takes place in two steps, evaporation of volatile components and pyrolysis of larger molecular structures at higher temperatures. Due to the soft ionisation, homologue rows of alkanes and alkenes could be detected on basis of their molecular ions. The obtained information from the thermal analysis/photo ionisation mass spectrometry experiments can be drawn on in comparison to the investigation of the primary products from flash pyrolysis of biomass for production of biofuels and chemicals.  相似文献   

18.
The pyrolysis of the lignocellulosic biomass is a promising process to produce biofuels or green chemicals. Specific analytical methods have to be developed in order to better understand the composition of biomass and of its pyrolysis products and therefore to optimize the design of pyrolysis processes. For this purpose, different biomasses (Douglas and Miscanthus) and one biochar were analyzed by laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry (LDI FT-ICR MS). This method allowed the biomass and biochar to be analyzed without any sample preparation and with a spatial resolution of about 100 μm. The influence of LDI conditions (laser wavelength and laser irradiance) and the nature of the biomass and biochar on the obtained mass spectrum were investigated. The nature and origin of the observed ions highly depended on LDI conditions. In the softest laser–biomass interaction conditions (low laser irradiance), the detected ions were related to the nature of the investigated biomass. Indeed, the main part of the detected species came from the different biomass subunits and was produced by photolysis of covalent bonds. When more severe laser irradiation conditions were used, the obtained mass spectra gathered the ions relative to (i) the chemical components of the investigated samples, (ii) the recombination products of these species in the gas phase after their ejection from the sample surface, and (iii) the compounds produced by laser pyrolysis of the sample. This was expected to be useful to mimic thermal pyrolysis.
Graphical Abstract
  相似文献   

19.
This study details multicriteria assessment methodology that integrates economic, social, environmental, and technical factors in order to rank alternatives for biomass collection and transportation systems. Ranking of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8×106 dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems is based on cost of delivered biomass, quality of biomass supplied, emissions during collection, energy input to the chain operations, and maturity of supply system technologies. The assessment methodology is used to evaluate alternatives for collecting 1.8×106 dry t/yr based on assumptions made on performance of various assemblies of biomass collection systems. A proposed collection option using loafer/stacker was shown to be the best option followed by ensiling and baling. Ranking of biomass transport systems is based on cost of biomass transport, emissions during transport, traffic congestion, and maturity of different technologies. At a capacity of 4×106 dry t/yr, rail transport was shown to be the best option, followed by truck transport and pipeline transport, respectively. These rankings depend highly on assumed maturity of technologies and scale of utilization. These may change if technologies such as loafing or ensiling (wet storage) methods are proved to be infeasible for large-scale collection systems.  相似文献   

20.

This paper investigates the effect of some biofuels on thermal balance and performance characteristics of a single-cylinder, four-stroke SI internal combustion engine. In this study, total and instantaneous energy balance of an air-cooled, small-scale engine using various biofuels is investigated. An experimental study is carried out on gasoline engine to validate the numerical calculations. Bio-alternative fuels which include methanol, ethanol and 2-ethanol–gasoline-blended fuels consisting of E85, E15 are examined numerically. Results indicate that methanol is the most effective fuel in aspect of power generation. Ethanol, E85, E15 and gasoline are placed in next positions, respectively. Break specific fuel consumption shows totally reversed trend. It is evaluated that by increasing engine speed, heat transfer to brake power ratio decreases and lower percentage of energy in form of heat transfer is lost. The least heat transfer to brake power ratio among studied fuel is related to methanol which approves it as the most efficient biofuel. Based on instantaneous in-cylinder energy balance analysis, at the end of combustion and during expansion stroke, instantaneous brake work of fuels outpaces each other at around 40° crank angle aTDC.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号