首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Groups of six mongolian gerbils were exposed to two-octave (1414-5656 Hz) band noise for 1 h at 100, 110, and 120 dB SPL. Threshold shift at several frequencies was measured 0.5, 3, 6, and 12 h, and 1-28 days after exposure. Final thresholds were determined at least two months postexposure. Extensive threshold shift was observed in all groups 0.5 h after exposure (TS0.5h). Where threshold shift increased in the initial hours after exposure, such increases were correlated with eventual permanent threshold shift (PTS). Recovery of thresholds from 1-28 days after exposure was approximately exponential, and slowest at the edges of the exposure band. PTS was seen in the 110 and 120 dB SPL groups. With TS0.5h of 50 dB or less, no PTS resulted. With TS0.5h above 50-60 dB, eventual PTS increased linearly with a slope of about 1.25 PTS/TS0.5h. Cochlear damage was evaluated by light microscopy. The relationship between hair cell loss and PTS was consistent with an inner hair cell threshold about 40 dB higher than that of outer hair cells. It is suggested that recovery from noise-induced threshold shift may involve different mechanisms in the two types of hair cells.  相似文献   

2.
The purpose of this study was to determine how closely the auditory brainstem response (ABR) can estimate sensorineural threshold shifts in rats exposed to loud sound. Behavioral and ABR thresholds were obtained for tones or noise before and after exposure to loud sound. The results showed that the ABR threshold shift obtained with tone pips estimated the initial pure-tone threshold shifts to within +/-5 dB 11% of the time and the permanent pure-tone threshold shifts 55% of the time, both with large errors. Determining behavioral thresholds for the same tone pips used for the ABR did not improve the agreement between the measures. In contrast, the ABR obtained with octave noise estimated the initial threshold shifts for that noise to within +/-5 dB 25% of the time and the permanent threshold shifts 89% of the time, with much smaller errors. Thus, it appears that the noise-evoked ABR is more accurate in estimating threshold shift than the tone-evoked ABR.  相似文献   

3.
Whole nerve action potential (AP) and single auditory-nerve fiber thresholds were measured in chinchillas exposed to noise. The exposure stimulus was a 500-Hz octave band of noise presented at 95 dB SPL for 15 min/h, for 4 or 40 days. The AP thresholds were elevated by about 40 dB on day 4, between 0.5 kHz and approximately 8 kHz. On day 40, AP thresholds at the same frequencies were lower by 10-25 dB, even though the noise exposure had continued. Single fiber threshold tuning curves exhibited pathologies similar to those previously observed following noise exposure. Tuning curves measured on day 40 were more normal in appearance. These results confirm that similar recovery of threshold observed in psychophysical experiments [Clark et al., J. Acoust. Soc. Am. 82, 1253-1264 (1987)] can be understood in terms of the sensitivity of the peripheral auditory system.  相似文献   

4.
Tone thresholds and speech-reception thresholds were measured in 200 individuals (400 ears) with noise-induced hearing loss. The speech-reception thresholds were measured in a quiet condition and in noise with a speech spectrum at levels of 35, 50, 65, and 80 dBA. The tone audiograms could be described by three principal components: hearing loss in the regions above 3 kHz, from 1 to 3 kHz and below 1 kHz; the speech thresholds could be described by two components: speech reception in quiet and speech reception in noise at 50-80 dBA. Hearing loss above 1 kHz was related to speech reception in noise; hearing loss at and below 1 kHz to speech reception in quiet. The correlation between the speech thresholds in quiet and in noise was only R = 0.45. An adequate predictor of the speech threshold in noise, the primary factor in the hearing handicap, was the pure-tone average at 2 and 4 kHz (PTA2,4, R = 0.72). The minimum value of the prediction error for any tone-audiometric predictor of this speech threshold was 1.2 dB (standard deviation). The prediction could not be improved by taking into account the critical ratio for low-frequency noise nor by its upward spread of masking. The prediction error is due to measurement error and to a factor common to both ears. The latter factor is ascribed to cognitive skill in speech reception. Hearing loss above 10 to 15 dB HL (hearing level) already shows an effect on the speech threshold in noise, a noticeable handicap is found at PTA2,4 = 30 dB HL.  相似文献   

5.
Six monaural chinchillas were exposed to a repetitive, reverberant, impulse noise for a total of five days, 8 h per day. The average peak overpressure within the holding cage was 113 dB. The reverberation time (pressure fluctuation envelope within 20 dB of peak) was 160 ms. Auditory thresholds were measured at 0.25, 0.5, 1, 2, 4, and 8 kHz before and after each day's exposure using either the average-evoked response technique or shock avoidance conditioning. After the last exposure, recovery was monitored for five successive days. Final thresholds were obtained starting at 30 days postexposure after which the animals were sacrificed for cochlear histology. The high frequencies (4, 8 kHz) showed a daily median shift of 40 dB and a 27 dB recovery before the following day's exposure. The low frequencies (0.25, 0.5 kHz) were shifted 35 dB after each day's exposure with a 15 dB recovery overnight. Final median audiograms showed little permanent threshold shift. The cochleagrams for two test animals were found to be normal while the remaining four displayed 10%--40% losses in hair cells at specific cochlear sites.  相似文献   

6.
It is well known that excessive exposure to noise results in temporary and/or permanent changes in hearing sensitivity in both human and animal subjects. The purpose of this review is to describe the major findings from laboratory studies of experimentally induced hearing losses, both temporary and permanent, resulting from exposure to noise in animal subjects which have been published since the report of Kryter et al. (1966). The data reviewed support the following general statements: (1) The chinchilla is the most widely used and most appropriate animal model for studies of noise-induced hearing loss; (2) with continuous exposures to moderate-level noise, thresholds reach asymptotic levels (ATS) within 18-24 h; (3) permanent threshold shifts, however, depend upon the level, frequency, and the duration of exposure; (4) below a "critical level" of about 115 dB, permanent threshold shift (PTS) and cell loss are generally related to the total energy in continuous exposures; (5) periodic rest periods inserted in an exposure schedule are protective and result in less hearing loss and cochlear damage than equal energy continuous exposures; and (6) under some schedules of periodic exposure, threshold shifts increase over the first few days of exposure, then recover as much as 30 dB as the exposure continues.  相似文献   

7.
Sixty guinea pigs were exposed to a steady-state broadband noise with a falling frequency spectrum. The sound-pressure level was varied between 96 and 117 dB SPL, and the duration of the exposure was varied from 3 to 12 h. After 4-5 weeks, the auditory thresholds were determined by electrocochleography at 14 frequencies, and the results were compared with a control group. With increasing sound-pressure level, the thresholds became elevated at all frequencies. The maximum threshold elevation also exhibited a slight shift toward higher frequencies. With increasing exposure time, the threshold elevations increased and shifted into the high-frequency region, whereas the low-frequency region was less affected. Linear regression analysis showed that the average threshold elevation between 1 and 20 kHz did not deviate from that predicted by the equal-energy hypothesis. However, the high-frequency loss at 5-20 kHz was very dependent on the exposure time, whereas the 1- to 4-kHz loss was not. There was no sign of any critical intensity with sudden increments in threshold elevation.  相似文献   

8.
Gap detection and masking in hearing-impaired and normal-hearing subjects   总被引:7,自引:0,他引:7  
Subjects with cochlear impairments often show reduced temporal resolution as measured in gap-detection tasks. The primary goals of these experiments were: to assess the extent to which the enlarged gap thresholds can be explained by elevations in absolute threshold; and to determine whether the large gap thresholds can be explained by the same processes that lead to a slower-than-normal recovery from forward masking. In experiment I gap thresholds were measured for nine unilaterally and eight bilaterally impaired subjects, using bandlimited noise stimuli centered at 0.5, 1.0, and 2.0 kHz. Gap thresholds were usually larger for the impaired ears, even when the comparisons were made at equal sensation levels (SLs). Gap thresholds tended to increase with increasing absolute threshold, but the scatter of gap thresholds was large for a given degree of hearing loss. In experiment II threshold was measured as a function of the delay between the onset of a 210-ms masker and the onset of a 10-ms signal in both simultaneous- and forward-masking conditions. The signal frequency was equal to the center frequency of the bandlimited noise masker, which was 0.5, 1.0, or 2.0 kHz. Five subjects with unilateral cochlear impairments, two subjects with bilateral impairments, and two normal subjects were tested. The rate of recovery from forward masking, particularly the initial rate, was usually slower for the impaired ears, even when the maskers were presented at equal SLs. Large gap thresholds tended to be associated with slow rates of recovery from forward masking.  相似文献   

9.
The decrease in absolute threshold with increasing stimulus duration (often referred to as "temporal integration") is greater for listeners with normal hearing than for listeners with sensorineural hearing loss. It has been suggested that the difference is related to reduced basilar-membrane (BM) compression in the impaired group. The present experiment tested this hypothesis by comparing temporal integration and BM compression in normal and impaired ears at low levels. Absolute thresholds were measured for 4, 24, and 44 ms pure-tone signals, with frequencies (f(s)) of 2 and 4 kHz. The difference between the absolute thresholds for the 4 and 24 ms signals was used as a measure of temporal integration. Compression near threshold was estimated by measuring the level of a 100 ms off-frequency (0.45f(s)) pure-tone forward masker required to mask a 44 ms pure-tone signal presented at sensation levels of 5 and 10 dB. There was a significant negative correlation between amount of temporal integration and absolute threshold. However, there was no correlation between absolute threshold and compression at low levels; both normal and impaired ears showed a nearly linear response. The results suggest that the differences in integration between normal and impaired ears cannot be explained by differences in BM compression.  相似文献   

10.
Two experiments are presented that measure the acuity of binaural processing of modulated interaural level differences (ILDs) using psychoacoustic methods. In both experiments, dynamic ILDs were created by imposing an interaurally antiphasic sinusoidal amplitude modulation (AM) signal on high-frequency carriers, which were presented over headphones. In the first experiment, the sensitivity to dynamic ILDs was measured as a function of the modulation frequency using puretone, and interaurally correlated and uncorrelated narrow-band noise carriers. The intrinsic interaural level fluctuations of the uncorrelated noise carriers raised the ILD modulation detection thresholds with respect to the pure-tone carriers. The diotic fluctuations of the correlated noise carriers also caused a small increase in the thresholds over the pure-tone carriers, particularly with low ILD modulation frequencies. The second experiment investigated the modulation frequency selectivity in dynamic ILD processing by imposing an interaurally uncorrelated bandpass noise AM masker in series with the interaurally antiphasic AM signal on a pure-tone carrier. By varying the masker center frequencies relative to the signal modulation frequency, broadly tuned, bandpass-shaped patterns were obtained. Simulations with an existing binaural model show that a low-pass filter to limit the binaural temporal resolution is not sufficient to predict the results of the experiments.  相似文献   

11.
A new method for direct pure-tone threshold estimation from input/output functions of distortion product otoacoustic emissions (DPOAEs) in humans is presented. Previous methods use statistical models relating DPOAE level to hearing threshold including additional parameters e.g., age or slope of DPOAE I/O-function. Here we derive a DPOAE threshold from extrapolated DPOAE I/O-functions directly. Cubic 2 f1-f2 distortion products and pure-tone threshold at f2 were measured at 51 frequencies between f2=500 Hz and 8 kHz at up to ten primary tone levels between L2=65 and 20 dB SPL in 30 normally hearing and 119 sensorineural hearing loss ears. Using an optimized primary tone level setting (L1 = 0.4L2 + 39 dB) that accounts for the nonlinear interaction of the two primaries at the DPOAE generation site at f2, the pressure of the 2 f1-f2 distortion product pDP is a linear function of the primary tone level L2. Linear regression yields correlation coefficients higher than 0.8 in the majority of the DPOAE I/O-functions. The linear behavior is sufficiently fulfilled for all frequencies in normal and impaired hearing. This suggests that the observed linear functional dependency is quite general. Extrapolating towards pDP=0 yields the DPOAE threshold for L2. There is a significant correlation between DPOAE threshold and pure-tone threshold (r=0.65, p<0.001). Thus, the DPOAEs that reflect the functioning of an essential element of peripheral sound processing enable a reliable estimation of cochlear hearing threshold up to hearing losses of 50 dBHL without any statistical data.  相似文献   

12.
The findings of a number of studies investigating the effects of excessive sound on hearing have indicated that the correspondence between behavioral, physiological, and histological measures of noise-induced hearing loss may be markedly dependent upon the sensitivity of the particular measure. Recent studies demonstrating significant changes in the responses of single auditory neurons following brief exposures to pure tones suggest that single-unit activity may be a sensitive indicator of physiological insult to the organ of Corti's sensory cells. In addition, the long-lasting nature of the changes in neural responsiveness suggests that each temporary threshold shift (TTS) episode may produce an increment of damage to the ear that eventually contributes to a measurable permanent threshold shift (PTS). A logical extension of this implication is the proposal that repeated episodes of TTS would first affect single-unit thresholds, and that such damage would eventually manifest itself as PTS. A test of this notion was performed by repeatedly exposing monkeys to short-lasting TTS sounds for many months. Behavioral thresholds were monitored using a reaction-time task before and after each inducement of TTS. Two subjects participated in exposure sessions for 18 months, while the remaining monkey was exposed to identical stimuli for 6 months. At the end of behavioral testing, the monkeys were prepared for chronic recording from single cells of the cochlear nucleus. Following the recording period, cochleas were prepared for examination as plastic-embedded whole mounts. Flat preparations of the cochlear duct were made and the position and extent of damage to the organ of Corti and myelinated nerve fibers were determined. No elevations in behavioral threshold were noted for the monkey receiving 6 months of sound-exposure experience, while for both subjects exposed for 18 months, a significant high-frequency hearing loss became apparent during the final months of exposure. For damaged ears, the thresholds of ipsilateral cochlear nucleus units were elevated for characteristic frequencies (CFs) corresponding to the frequency regions where behavioral thresholds were shifted. Thresholds for units with high-frequency CFs in the animal exposed for 6 months also demonstrated a loss in sensitivity. Histological examination of the cochleas of monkeys with permanent hearing losses revealed corresponding damage to the high-frequency region of the organ of Corti. The monkey exposed for 6 months, which demonstrated only elevated unit thresholds, also had high-frequency lesions.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

13.
Pure-tone sound detection thresholds were obtained in water for one harbor seal (Phoca vitulina), two California sea lions (Zalophus californianus), and one northern elephant seal (Mirounga angustirostris) before and immediately following exposure to octave-band noise. Additional thresholds were obtained following a 24-h recovery period. Test frequencies ranged from 100 Hz to 2000 Hz and octave-band exposure levels were approximately 60-75 dB SL (sensation level at center frequency). Each subject was trained to dive into a noise field and remain stationed underwater during a noise-exposure period that lasted a total of 20-22 min. Following exposure, three of the subjects showed threshold shifts averaging 4.8 dB (Phoca), 4.9 dB (Zalophus), and 4.6 dB (Mirounga). Recovery to baseline threshold levels was observed in test sessions conducted within 24 h of noise exposure. Control sessions in which the subjects completed a simulated noise exposure produced shifts that were significantly smaller than those observed following noise exposure. These results indicate that noise of moderate intensity and duration is sufficient to induce TTS under water in these pinniped species.  相似文献   

14.
A California sea lion (Zalophus californianus) was tested in a behavioral procedure to assess noise-induced temporary threshold shift (TTS) in air. Octave band fatiguing noise was varied in both duration (1.5-50 min) and level (94-133 dB re 20 muPa) to generate a variety of equal sound exposure level conditions. Hearing thresholds were measured at the center frequency of the noise (2500 Hz) before, immediately after, and 24 h following exposure. Threshold shifts generated from 192 exposures ranged up to 30 dB. Estimates of TTS onset [159 dB re (20 muPa)(2) s] and growth (2.5 dB of TTS per dB of noise increase) were determined using an exponential function. Recovery for threshold shifts greater than 20 dB followed an 8.8 dB per log(min) linear function. Repeated testing indicated possible permanent threshold shift at the test frequency, but a later audiogram revealed no shift at this frequency or higher. Sea lions appear to be equally susceptible to noise in air and in water, provided that the noise exposure levels are referenced to absolute sound detection thresholds in both media. These data provide a framework within which to consider effects arising from more intense and/or sustained exposures.  相似文献   

15.
Published data on Temporary Threshold Shift (TTS) suggest that in many cases the rms pressure at threshold during and after exposure to noise varies in a simple exponential manner, and that the ultimate shift of pressure threshold for exposure to steady noise is dependent on the mean square pressure of that noise. This response could occur if some part of the hearing mechanism were heated by exposure to noise and were at the same time subject to Newtonian cooling, and if the change in the pressure threshold were proportional to the change of temperature. This model can explain the shapes of many growth and recovery curves given in dB, why time constants found for recovery from TTS appear greater than those for growth and why threshold shifts on ears with elevated thresholds appear smaller than those for ears with low thresholds. Because of individual variation, averaged dB results mask the nature of the processes involved. Hence, for a better understanding of TTS, individual ears should be studied separately, and, if possible, measurements should be made in rms Pa instead of dB.  相似文献   

16.
The aim of this study was to investigate whether distortion product otoacoustic emissions (DPOAEs) are a suitable means for detecting changes in outer hair cell (OHC) functionality due to exposure to three hours of discotheque music and whether efferent reflex strength of the medial olivocochlear bundle is able to predict the ear's susceptibility to high-level noise. High-resolution DPOAEs (Δf(2)=47 Hz) were recorded between 3.5 and 4.5 kHz at close-to-threshold primary tone levels. For comparison, high-resolution pure-tone audiometry was conducted in the same frequency range. Efferent reflex strength was measured by means of DPOAEs at a specific frequency with and without contralateral acoustic stimulation. A significant deterioration of more than 10 dB was found for pure-tone thresholds and DPOAE levels indicating that three hours of high-level noise exert a considerable influence on hearing capability and OHC functionality. A significant correlation between shifts in pure-tone threshold and shifts in DPOAE level occurred when removing data with differing calibration across measurements. There was no clear correlation between efferent reflex strength and shifts in pure-tone threshold or shifts in DPOAE level suggesting that the applied measures of efferent reflex strength may not be suitable for quantifying individual vulnerability to noise.  相似文献   

17.
The overshoot effect can be reduced by temporary hearing loss induced by aspirin or exposure to intense sound. The present study simulated a hearing loss at 4.0 kHz via pure-tone forward masking and examined the effect of the simulation on threshold for a 10-ms, 4.0-kHz signal presented 1 ms after the onset of a 400-ms, broadband noise masker whose spectrum level was 20 dB SPL. Masker frequency was 3.6, 4.0, or 4.2 kHz, and masker level was 80 dB SPL. Subject-dependent delays were determined such that 10 or 20 dB of masking at 4.0 kHz was produced. In general, the pure-tone forward masker did not reduce the simultaneous-masked threshold, suggesting that elevating threshold with a pure-tone forward masker does not sufficiently simulate the effect of a temporary hearing loss on overshoot.  相似文献   

18.
The chronic effects of kanamycin (KM) on hearing in the budgerigar were investigated by behavioral audiometry. The birds received a daily intramuscular injection of KM (100 mg/kg or 200 mg/kg) for 10 successive days, and absolute thresholds between pre- and post-treatment were compared. KM induced both transient and permanent low-frequency specific hearing loss; i.e., the elevation of threshold for frequencies below 1 kHz was greater than that for frequencies above 1 kHz. Moreover, the degree of hearing loss was dose dependent. The low-frequency selective effects of KM in the present study were contrary to the high-frequency specificity of aminoglycoside ototoxicity in mammals. To assess the effect of KM on auditory frequency resolution, critical ratios were estimated in pathological birds with low-frequency specific hearing loss. There was a linear relation between shift in critical ratio and shift in absolute threshold, suggesting that the increase in the critical ratio is due to a decrease in the efficiency of the detector mechanism rather than a change in the spectral resolving power of the birds.  相似文献   

19.
In Yangtze finless porpoises Neophocaena phocaenoides asiaeorientalis, the effects of fatiguing noise on hearing thresholds at frequencies of 32, 45, 64, and 128 kHz were investigated. The noise parameters were: 0.5-oct bandwidth, -1 to +0.5 oct relative to the test frequency, 150 dB re 1 μPa (140-160 dB re 1 μPa in one measurement series), with 1-30 min exposure time. Thresholds were evaluated using the evoked-potential technique allowing the tracing of threshold variations with a temporal resolution better than 1 min. The most effective fatiguing noise was centered at 0.5 octave below the test frequency. The temporary threshold shift (TTS) depended on the frequencies of the fatiguing noise and test signal: The lower the frequencies, the bigger the noise effect. The time-to-level trade of the noise effect was incomplete: the change of noise level by 20 dB resulted in a change of TTS level by nearly 20 dB, whereas the tenfold change of noise duration resulted in a TTS increase by 3.8-5.8 dB.  相似文献   

20.
Reductions in overshoot following intense sound exposures   总被引:1,自引:0,他引:1  
Overshoot refers to the poorer detectability of brief signals presented soon after the onset of a masking noise compared to those presented after longer delays. In the present experiment, brief tonal signals were presented 2 or 190 ms following the onset of a broadband masker that was 200 ms in duration. These two conditions of signal delay were tested before and after a series of exposures to a tone intense enough to induce temporary threshold shift (TTS). The magnitude of the overshoot was reduced after the exposure when a TTS of at least 10 dB was induced, but not when smaller amounts of TTS were induced. The reduction in overshoot was due to a decrease in the masked thresholds with the 2-ms delay; masked thresholds with the 190-ms delay were not different pre- and post-exposure. The implication is that the mechanisms responsible for the normal overshoot effect are temporarily inactivated by the same stimulus manipulations that produce a mild exposure-induced hearing loss. Thus the result is the paradox that exposure to intense sounds can produce a loss of signal detectability in certain stimulus conditions and a simultaneous improvement in detectability in other stimulus conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号