首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Stereoselective methods for the chemical synthesis of beta-N-glycosyl amides are needed to generate glycopeptides and glycoproteins. Here, we report that the Staudinger ligation can be used to form glycosylated asparagine derivatives. The reaction proceeds with high stereoselectivity, and a variety of glycosyl azides can function as substrates. Our results provide precedence for the use of this powerful amide-bond-forming reaction for N-glycopeptide synthesis. [reaction: see text]  相似文献   

2.
3.
The Staudinger ligation between an azido-protein and a phosphinothioester-derivatized surface is demonstrated to be an effective means for the site-specific, covalent immobilization of a protein. Immobilization yields of >50% are obtained in <1 min, and immobilized proteins have >80% of their expected activity. No other method enables more rapid immobilization or a higher yield of active protein. Because azido-peptides and azido-proteins are readily attainable by synthesis, biosynthesis, or semisynthesis, the Staudinger ligation could be of unsurpassed utility in creating microarrays of functional peptides and proteins.  相似文献   

4.
An efficient approach for the synthesis of a series of S-acyl peptides containing internal cysteine residues has been developed and the chemical long-range ligation of these S-acyl peptides via 5-, 8-, 11- and 14-membered cyclic transition states has been investigated. Our results include the first examples of successful isopeptide ligations starting from S-acyl peptides containing non-terminal cysteine residues and indicate that the cyclic transition states studied in this present paper are decreasingly favored in the order of their sizes 5?14>11?8.  相似文献   

5.
The Staudinger ligation of peptides with a C-terminal phosphinothioester and N-terminal azide is an emerging method in protein chemistry. Here, the first Staudinger ligations of nonglycyl azides are reported and shown to proceed both in nearly quantitative yield and with no detectable effect on the stereochemistry at the alpha-carbon of the azide. These results demonstrate further the potential of the Staudinger ligation as a general method for the total synthesis of proteins from peptide fragments.  相似文献   

6.
The development of rapid screening methods for probing glycosyltransferase activities is essential for advancing the field of glycobiology. While assays for specific glycosyltransferases exist, there is no generalizable method that can be applied across the enzyme superfamily. Herein we describe a novel glycosyltransferase assay that exploits their unnatural substrate tolerance and the unique chemical reactivity of the azide. We applied this "azido-ELISA" to the family of polypeptide alpha-N-acetylgalactosaminyltransferases (ppGalNAcTs), all of which were able to transfer N-azidoacetylgalactosamine (GalNAz) from the unnatural nucleotide sugar donor UDP-GalNAz. The azide was detected and quantified by Staudinger ligation with a phosphine probe in a microtiter plate format. This approach should be applicable to any glycosyltransferase or group-transfer enzyme that tolerates unnatural azido substrates.  相似文献   

7.
In 1919 the German chemist Hermann Staudinger was the first to describe the reaction between an azide and a phosphine. It was not until recently, however, that Bertozzi and co-workers recognized the potential of this reaction as a method for bioconjugation and transformed it into the so-called Staudinger ligation. The bio-orthogonal character of both the azide and the phosphine functions has resulted in the Staudinger ligation finding numerous applications in various complex biological systems. For example, the Staudinger ligation has been utilized to label glycans, lipids, DNA, and proteins. Moreover, the Staudinger ligation has been used as a synthetic method to construct glycopeptides, microarrays, and functional biopolymers. In the emerging field of bio-orthogonal ligation strategies, the Staudinger ligation has set a high standard to which most of the new techniques are often compared. This Review summarizes recent developments and new applications of the Staudinger ligation.  相似文献   

8.
9.
The Staudinger ligation of phosphine-substituted thioesters with (18)F-fluoroethylazide has been successfully applied to access (18)F-labelled molecules in radiochemical yields superior to 95%; the first fluorous variant of a Staudinger radio-ligation has been validated.  相似文献   

10.
The traceless Staudinger ligation enables the formation of an amide bond between a phosphinothioester (or phosphinoester) and an azide without the incorporation of residual atoms. Here, the coupling of peptides by this reaction was characterized in detail. Experiments with [(18)O]H(2)O indicated that the reaction mediated by (diphenylphosphino)methanethiol proceeded by S-->N acyl transfer of the iminophosphorane intermediate to form an amidophosphonium salt, rather than by an aza-Wittig reaction and subsequent hydrolysis of the resulting thioimidate. A continuous (13)C NMR-based assay revealed that the rate-determining step in the Staudinger ligation of glycyl residues mediated by (diphenylphosphino)methanethiol was the formation of the initial phosphazide intermediate. Less efficacious coupling reagents and reaction conditions led to the accumulation of an amine byproduct (which resulted from a Staudinger reduction) or phosphonamide byproduct (which resulted from an aza-Wittig reaction). The Staudinger ligation mediated by (diphenylphosphino)methanethiol proceeded with a second-order rate constant (7.7 x 10(-3) M(-1) s(-1)) and yield (95%) that was unchanged by the addition of exogenous nucleophiles. Ligations mediated by phosphinoalcohols had lower rate constants or less chemoselectivity. Accordingly, (diphenylphosphino)methanethiol was judged to be the most efficacious known reagent for effecting the traceless Staudinger ligation.  相似文献   

11.
Here we report the first Staudinger ligations which yield tetra- and pentapeptides starting from N-terminal α-azido peptides and C-terminal peptideo-(diphenylphosphine)phenyl esters. Mass spectrometric analysis of the reaction mixture provided a better insight into the mechanism of the Staudinger ligation and has been used to explain the observed intermediates and to optimize the ligation reaction. As a result, the optimized reaction enables the chemoselective coupling of peptides containing amino acids other than glycine at the ligation site.  相似文献   

12.
The structure of sialic acid on living cells can be modulated by metabolism of unnatural biosynthetic precursors. Here we investigate the conversion of a panel of azide-functionalized mannosamine and glucosamine derivatives into cell-surface sialosides. A key tool in this study is the Staudinger ligation, a highly selective reaction between modified triarylphosphines and azides that produces an amide-linked product. A preliminary study of the mechanism of this reaction, and refined conditions for its in vivo execution, are reported. The reaction provided a means to label the glycoconjugate-bound azidosugars with biochemical probes. Finally, we demonstrate that the cell-surface Staudinger ligation is compatible with hydrazone formation from metabolically introduced ketones. These two strategies provide a means to selectively modify cell-surface glycans with exogenous probes.  相似文献   

13.
Staudinger ligation: a peptide from a thioester and azide   总被引:1,自引:0,他引:1  
[reaction: see text] The technique of native chemical ligation enables the total chemical synthesis of proteins. This method is limited, however, by an absolute requirement for a cysteine residue at the ligation juncture. Here, this restriction is overcome with a new chemical ligation method in which a phosphinobenzenethiol is used to link a thioester and azide. The product is an amide with no residual atoms.  相似文献   

14.
[reaction: see text] o-Carboalkoxy triarylphosphines are shown to react with aryl azides to provide Staudinger ligation products bearing O-alkyl imidate linkages. This is in contrast to alkyl azides whose ligation to o-carboalkoxy triarylphosphines has been reported to yield amide-linked materials. This extension of the Staudinger ligation for coupling of abiotic reagents under biocompatible conditions highlights the utility of commercially available triarylphosphines through which suitable linkers can be attached via an ester moiety.  相似文献   

15.
[reaction: see text] The nature of a linker used for preparing glycoconjugate vaccines is of utmost importance as it may lead to immunogenic biomolecules. We report the conjugation of carbohydrate haptens to protein carriers leading to potential vaccines using the traceless Staudinger ligation. The ligation relies on the selective transfer of a phosphane substituent to an azide to form a native amide bond in the final product upon release of an oxidized phosphane byproduct. We designed new phosphino-functionalized cross-linkers suitable for protein carrier derivatization. We evaluated their utility in preparing conjugates using both synthetic and purified bacterial carbohydrates. The use of a borane-protected phosphane which is deprotected at the time of the ligation reaction led to the best results observed thus far in terms of stability toward oxidation and reactivity.  相似文献   

16.
Site-specific fragmentation of peptides at phosphorylated serine or threonine residues is demonstrated. This radical directed cleavage is accomplished by a two-step procedure. First the phosphate is replaced with naphthalenethiol using well established Michael Addition chemistry. Second, the modified peptide is electrosprayed and subjected to irradiation at 266 nm. Absorption at naphthalene causes homolytic cleavage of the connecting carbon-sulfur bond yielding a radical in the beta-position. Subsequent rearrangement cleaves the peptide backbone yielding a d-type fragment. This chemistry is generally applicable as demonstrated by experiments with several different peptides. Assignment of phosphorylation sites is greatly facilitated by this approach, particularly for peptides containing multiple serine or threonine residues.  相似文献   

17.
18.
《Tetrahedron: Asymmetry》2005,16(2):381-386
α-Glycosyl azides can be transformed in the corresponding α-glycosyl amides with good yields and selectivity via reduction–acylation (Staudinger ligation) reactions using funtionalised phosphines 1af. The limits and scope of this approach for the synthesis of α-glycosyl amides are reported.  相似文献   

19.
Interplay between electronic effects imparted by phosphinothiol substituents and steric effects imposed by amino-acid reactants affects the rate of the traceless Staudinger ligation of peptides in a predictable manner.  相似文献   

20.
A novel nucleotide building block for enzymatic synthesis of azide modified DNA and subsequent conjugation via Staudinger ligation was developed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号