首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Treated in this paper is the problem of estimating with squared error loss the generalized variance | Σ | from a Wishart random matrix S: p × p Wp(n, Σ) and an independent normal random matrix X: p × k N(ξ, Σ Ik) with ξ(p × k) unknown. Denote the columns of X by X(1) ,…, X(k) and set ψ(0)(S, X) = {(np + 2)!/(n + 2)!} | S |, ψ(i)(X, X) = min[ψ(i−1)(S, X), {(np + i + 2)!/(n + i + 2)!} | S + X(1) X(1) + + X(i) X(i) |] and Ψ(i)(S, X) = min[ψ(0)(S, X), {(np + i + 2)!/(n + i + 2)!}| S + X(1) X(1) + + X(i) X(i) |], i = 1,…,k. Our result is that the minimax, best affine equivariant estimator ψ(0)(S, X) is dominated by each of Ψ(i)(S, X), i = 1,…,k and for every i, ψ(i)(S, X) is better than ψ(i−1)(S, X). In particular, ψ(k)(S, X) = min[{(np + 2)!/(n + 2)!} | S |, {(np + 2)!/(n + 2)!} | S + X(1)X(1)|,…,| {(np + k + 2)!/(n + k + 2)!} | S + X(1)X(1) + + X(k)X(k)|] dominates all other ψ's. It is obtained by considering a multivariate extension of Stein's result (Ann. Inst. Statist. Math. 16, 155–160 (1964)) on the estimation of the normal variance.  相似文献   

2.
We prove that λ=0 is a global bifurcation point of the second-order periodic boundary-value problem (p(t)x(t))λx(t)−λ2x(t)−f(t,x(t),x(t),x(t));x(0)=x(1),x(0)=x(1). We study this equation under hypotheses for which it may be solved explicitly for x(t). However, it is shown that the explicitly solved equation does not satisfy the usual conditions that are sufficient to conclude global bifurcation. Thus, we need to study the implicit equation with regard to global bifurcation.  相似文献   

3.
Let X ≡ (X1, …, Xt) have a multinomial distribution based on N trials with unknown vector of cell probabilities p ≡ (p1, …, pt). This paper derives admissibility and complete class results for the problem of simultaneously estimating p under entropy loss (EL) and squared error loss (SEL). Let and f(x¦p) denote the (t − 1)-dimensional simplex, the support of X and the probability mass function of X, respectively. First it is shown that δ is Bayes w.r.t. EL for prior P if and only if δ is Bayes w.r.t. SEL for P. The admissible rules under EL are proved to be Bayes, a result known for the case of SEL. Let Q denote the class of subsets of of the form T = j=1kFj where k ≥ 1 and each Fj is a facet of which satisfies: F a facet of such that F naFjF ncT. The minimal complete class of rules w.r.t. EL when Nt − 1 is characterized as the class of Bayes rules with respect to priors P which satisfy P( 0) = 1, ξ(x) ≡ ∫ f(x¦p) P(dp) > 0 for all x in {x : sup 0 f(x¦p) > 0} for some 0 in Q containing all the vertices of . As an application, the maximum likelihood estimator is proved to be admissible w.r.t. EL when the estimation problem has parameter space Θ = but it is shown to be inadmissible for the problem with parameter space Θ = ( minus its vertices). This is a severe form of “tyranny of boundary.” Finally it is shown that when Nt − 1 any estimator δ which satisfies δ(x) > 0 x is admissible under EL if and only if it is admissible under SEL. Examples are given of nonpositive estimators which are admissible under SEL but not under EL and vice versa.  相似文献   

4.
For X one observation on a p-dimensional (p ≥ 4) spherically symmetric (s.s.) distribution about θ, minimax estimators whose risks dominate the risk of X (the best invariant procedure) are found with respect to general quadratic loss, L(δ, θ) = (δ − θ)′ D(δ − θ) where D is a known p × p positive definite matrix. For C a p × p known positive definite matrix, conditions are given under which estimators of the form δa,r,C,D(X) = (I − (ar(|X|2)) D−1/2CD1/2 |X|−2)X are minimax with smaller risk than X. For the problem of estimating the mean when n observations X1, X2, …, Xn are taken on a p-dimensional s.s. distribution about θ, any spherically symmetric translation invariant estimator, δ(X1, X2, …, Xn), with have a s.s. distribution about θ. Among the estimators which have these properties are best invariant estimators, sample means and maximum likelihood estimators. Moreover, under certain conditions, improved robust estimators can be found.  相似文献   

5.
Assume X = (X1, …, Xp)′ is a normal mixture distribution with density w.r.t. Lebesgue measure, , where Σ is a known positive definite matrix and F is any known c.d.f. on (0, ∞). Estimation of the mean vector under an arbitrary known quadratic loss function Q(θ, a) = (a − θ)′ Q(a − θ), Q a positive definite matrix, is considered. An unbiased estimator of risk is obatined for an arbitrary estimator, and a sufficient condition for estimators to be minimax is then achieved. The result is applied to modifying all the Stein estimators for the means of independent normal random variables to be minimax estimators for the problem considered here. In particular the results apply to the Stein class of limited translation estimators.  相似文献   

6.
A function f(x) defined on = 1 × 2 × … × n where each i is totally ordered satisfying f(x y) f(x y) ≥ f(x) f(y), where the lattice operations and refer to the usual ordering on , is said to be multivariate totally positive of order 2 (MTP2). A random vector Z = (Z1, Z2,…, Zn) of n-real components is MTP2 if its density is MTP2. Classes of examples include independent random variables, absolute value multinormal whose covariance matrix Σ satisfies −DΣ−1D with nonnegative off-diagonal elements for some diagonal matrix D, characteristic roots of random Wishart matrices, multivariate logistic, gamma and F distributions, and others. Composition and marginal operations preserve the MTP2 properties. The MTP2 property facilitate the characterization of bounds for confidence sets, the calculation of coverage probabilities, securing estimates of multivariate ranking, in establishing a hierarchy of correlation inequalities, and in studying monotone Markov processes. Extensions on the theory of MTP2 kernels are presented and amplified by a wide variety of applications.  相似文献   

7.
Exact comparisons are made relating E|Y0|p, E|Yn−1|p, and E(maxjn−1 |Yj|p), valid for all martingales Y0,…,Yn−1, for each p ≥ 1. Specifically, for p > 1, the set of ordered triples {(x, y, z) : X = E|Y0|p, Y = E |Yn−1|p, and Z = E(maxjn−1 |Yj|p) for some martingale Y0,…,Yn−1} is precisely the set {(x, y, z) : 0≤xyz≤Ψn,p(x, y)}, where Ψn,p(x, y) = xψn,p(y/x) if x > 0, and = an−1,py if x = 0; here ψn,p is a specific recursively defined function. The result yields families of sharp inequalities, such as E(maxjn−1 |Yj|p) + ψn,p*(a) E |Y0|paE |Yn−1|p, valid for all martingales Y0,…,Yn−1, where ψn,p* is the concave conjugate function of ψn,p. Both the finite sequence and infinite sequence cases are developed. Proofs utilize moment theory, induction, conjugate function theory, and functional equation analysis.  相似文献   

8.
Let {u0, u1,… un − 1} and {u0, u1,…, un} be Tchebycheff-systems of continuous functions on [a, b] and let f ε C[a, b] be generalized convex with respect to {u0, u1,…, un − 1}. In a series of papers ([1], [2], [3]) D. Amir and Z. Ziegler discuss some properties of elements of best approximation to f from the linear spans of {u0, u1,…, un − 1} and {u0, u1,…, un} in the Lp-norms, 1 p ∞, and show (under different conditions for different values of p) that these properties, when valid for all subintervals of [a, b], can characterize generalized convex functions. Their methods of proof rely on characterizations of elements of best approximation in the Lp-norms, specific for each value of p. This work extends the above results to approximation in a wider class of norms, called “sign-monotone,” [6], which can be defined by the property: ¦ f(x)¦ ¦ g(x)¦,f(x)g(x) 0, a x b, imply f g . For sign-monotone norms in general, there is neither uniqueness of an element of best approximation, nor theorems characterizing it. Nevertheless, it is possible to derive many common properties of best approximants to generalized convex functions in these norms, by means of the necessary condition proved in [6]. For {u0, u1,…, un} an Extended-Complete Tchebycheff-system and f ε C(n)[a, b] it is shown that the validity of any of these properties on all subintervals of [a, b], implies that f is generalized convex. In the special case of f monotone with respect to a positive function u0(x), a converse theorem is proved under less restrictive assumptions.  相似文献   

9.
We consider the estimation of multivariate regression functions r(x1,…,xd) and their partial derivatives up to a total order p1 using high-order local polynomial fitting. The processes {Yi,Xi} are assumed to be (jointly) associated. Joint asymptotic normality is established for the estimates of the regression function r and all its partial derivatives up to the total order p. Expressions for the bias and variance/covariance matrix (of the asymptotic distribution) are given.  相似文献   

10.
Caihui Lu  Haixia Xu   《Journal of Algebra》2003,260(2):570-576
In a symmetrizable Kac–Moody algebra g(A), let α=∑i=1nkiαi be an imaginary root satisfying ki>0 and α,αi<0 for i=1,2,…,n. In this paper, it is proved that for any xαgα{0}, satisfying [xα,fn]≠0 and [xα,fi]=0 for i=1,2,…,n−1, there exists a vector y such that the subalgebra generated by xα and y contains g′(A), the derived subalgebra of g(A).  相似文献   

11.
For Xi, …, Xn a random sample and K(·, ·) a symmetric kernel this paper considers large sample properties of location estimator satisfying , . Asymptotic normality of is obtained and two forms of interval estimators for parameter θ satisfying EK(X1 − θ, X2 − θ) = 0, are discussed. Consistent estimation of the variance parameters is obtained which permits the construction of asymptotically distribution free procedures. The p-variate and multigroup extension is accomplished to provide generalized one-way MANOVA. Monte Carlo results are included.  相似文献   

12.
If E is an ordered set, we study the processes Yt, t E, for which the vectorial spaces t generated by all the conditional expectations E(Ysβ t) for st have finite dimensions d(t) ≤ N. ( t is some convenient filtration.) We first develop a geometrical approach in the general situation and give a “Goursat's representation” Yt = Σfi(t)Mi(t), where the Mi(t) are martingales. We then restrict us to the cases E = or E = 2 and give representations of the processes by the mean of stochastic integrals of “Goursat's kernels.” The special case when Yt is the solution of a differential equation is considered.  相似文献   

13.
For fC[−1, 1], let Hmn(fx) denote the (0, 1, …,anbsp;m) Hermite–Fejér (HF) interpolation polynomial of f based on the Chebyshev nodes. That is, Hmn(fx) is the polynomial of least degree which interpolates f(x) and has its first m derivatives vanish at each of the zeros of the nth Chebyshev polynomial of the first kind. In this paper a precise pointwise estimate for the approximation error |H2mn(fx)−f(x)| is developed, and an equiconvergence result for Lagrange and (0, 1, …, 2m) HF interpolation on the Chebyshev nodes is obtained. This equiconvergence result is then used to show that a rational interpolatory process, obtained by combining the divergent Lagrange and (0, 1, …, 2m) HF interpolation methods on the Chebyshev nodes, is convergent for all fC[−1, 1].  相似文献   

14.
Let 2s points yi=−πy2s<…<y1<π be given. Using these points, we define the points yi for all integer indices i by the equality yi=yi+2s+2π. We shall write fΔ(1)(Y) if f is a 2π-periodic continuous function and f does not decrease on [yiyi−1], if i is odd; and f does not increase on [yiyi−1], if i is even. In this article the following Theorem 1—the comonotone analogue of Jackson's inequality—is proved. 1. If fΔ(1)(Y), then for each nonnegative integer n there is a trigonometric polynomial τn(x) of order n such that τnΔ(1)(Y), and |f(x)−πn(x)|c(s) ω(f; 1/(n+1)), x , where ω(f; t) is the modulus of continuity of f, c(s)=const. Depending only on s.  相似文献   

15.
Let X1, X2, …, Xn be random vectors that take values in a compact set in Rd, d ≥ 1. Let Y1, Y2, …, Yn be random variables (“the responses”) which conditionally on X1 = x1, …, Xn = xn are independent with densities f(y | xi, θ(xi)), i = 1, …, n. Assuming that θ lives in a sup-norm compact space Θq,d of real valued functions, an optimal L1-consistent estimator of θ is constructed via empirical measures. The rate of convergence of the estimator to the true parameter θ depends on Kolmogorov's entropy of Θq,d.  相似文献   

16.
Among all integration rules with n points, it is well-known that n-point Gauss–Legendre quadrature rule∫−11f(x) dxi=1nwif(xi)has the highest possible precision degree and is analytically exact for polynomials of degree at most 2n−1, where nodes xi are zeros of Legendre polynomial Pn(x), and wi's are corresponding weights.In this paper we are going to estimate numerical values of nodes xi and weights wi so that the absolute error of introduced quadrature rule is less than a preassigned tolerance ε0, say ε0=10−8, for monomial functionsf(x)=xj, j=0,1,…,2n+1.(Two monomials more than precision degree of Gauss–Legendre quadrature rules.) We also consider some conditions under which the new rules act, numerically, more accurate than the corresponding Gauss–Legendre rules. Some examples are given to show the numerical superiority of presented rules.  相似文献   

17.
In this paper we define the vertex-cover polynomial Ψ(G,τ) for a graph G. The coefficient of τr in this polynomial is the number of vertex covers V′ of G with |V′|=r. We develop a method to calculate Ψ(G,τ). Motivated by a problem in biological systematics, we also consider the mappings f from {1, 2,…,m} into the vertex set V(G) of a graph G, subject to f−1(x)f−1(y)≠ for every edge xy in G. Let F(G,m) be the number of such mappings f. We show that F(G,m) can be determined from Ψ(G,τ).  相似文献   

18.
Let {α12,…} be a sequence of real numbers outside the interval [−1,1] and μ a positive bounded Borel measure on this interval satisfying the Erd s–Turán condition μ′>0 a.e., where μ′ is the Radon–Nikodym derivative of the measure μ with respect to the Lebesgue measure. We introduce rational functions n(x) with poles {α1,…,αn} orthogonal on [−1,1] and establish some ratio asymptotics for these orthogonal rational functions, i.e. we discuss the convergence of n+1(x)/n(x) as n tends to infinity under certain assumptions on the location of the poles. From this we derive asymptotic formulas for the recurrence coefficients in the three-term recurrence relation satisfied by the orthonormal functions.  相似文献   

19.
We establish sufficient conditions for the persistence and the contractivity of solutions and the global asymptotic stability for the positive equilibrium N*=1/(a+∑i=0mbi) of the following differential equation with piecewise constant arguments:
where r(t) is a nonnegative continuous function on [0,+∞), r(t)0, ∑i=0mbi>0, bi0, i=0,1,2,…,m, and a+∑i=0mbi>0. These new conditions depend on a,b0 and ∑i=1mbi, and hence these are other type conditions than those given by So and Yu (Hokkaido Math. J. 24 (1995) 269–286) and others. In particular, in the case m=0 and r(t)≡r>0, we offer necessary and sufficient conditions for the persistence and contractivity of solutions. We also investigate the following differential equation with nonlinear delay terms:
where r(t) is a nonnegative continuous function on [0,+∞), r(t)0, 1−axg(x,x,…,x)=0 has a unique solution x*>0 and g(x0,x1,…,xm)C1[(0,+∞)×(0,+∞)××(0,+∞)].  相似文献   

20.
We give a direct formulation of the invariant polynomials μGq(n)(, Δi,;, xi,i + 1,) characterizing U(n) tensor operators p, q, …, q, 0, …, 0 in terms of the symmetric functions Sλ known as Schur functions. To this end, we show after the change of variables Δi = γi − δi and xi, i + 1 = δi − δi + 1 thatμGq(n)(,Δi;, xi, i + 1,) becomes an integral linear combination of products of Schur functions Sα(, γi,) · Sβ(, δi,) in the variables {γ1,…, γn} and {δ1,…, δn}, respectively. That is, we give a direct proof that μGq(n)(,Δi,;, xi, i + 1,) is a bisymmetric polynomial with integer coefficients in the variables {γ1,…, γn} and {δ1,…, δn}. By making further use of basic properties of Schur functions such as the Littlewood-Richardson rule, we prove several remarkable new symmetries for the yet more general bisymmetric polynomials μmGq(n)1,…, γn; δ1,…, δm). These new symmetries enable us to give an explicit formula for both μmG1(n)(γ; δ) and 1G2(n)(γ; δ). In addition, we describe both algebraic and numerical integration methods for deriving general polynomial formulas for μmGq(n)(γ; δ).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号