首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three kinds of LiFePO4 materials, mixed with carbon (as LiFePO4/C), doped with Ti (as Li0.99Ti0.01FePO4), and treated both ways (as Li0.99Ti0.01FePO4/C composite), were synthesized via ball milling by solid-state reaction method. The crystal structure and electrochemical behavior of the materials were investigated using X-ray diffraction, SEM, TEM, cyclic voltammetry, and charge/discharge cycle measurements. It was found that the electrochemical behavior of LiFePO4 could be increased by carbon coating and Ti-doping methods. Among the materials, Li0.99Ti0.01FePO4/C composite presents the best electrochemical behavior, with an initial discharge capacity of 154.5 mAh/g at a discharge rate of 0.2 C, and long charge/discharge cycle life. After 120 cycles, its capacity remains at 92% of the initial capacity. The Li0.99Ti0.01FePO4/C composite developed here can be used as the cathode material for lithium ion batteries.  相似文献   

2.
采用两步固相反应合成了锂、铁双位掺杂的锂离子电池正极材料Li0.99Nb0.01Fe1-xMgxPO4/C(x=0,0.01,0.02,0.03,0.04)。通过X射线衍射(XRD)、扫描电镜(SEM)以及恒电流充放电测试,研究了复合材料的晶体结构、形貌以及电化学性能。实验结果表明,制备的Li0.99Nb0.01Fe1-xMgxPO4/C(x=0,0.01,0.02,0.03,0.04)为纯相,掺杂适量的Nb5+、Mg2+离子可减小材料的晶粒尺寸,当Nb离子掺杂量为1mol%、Mg离子掺杂量为3mol%时,Li0.99Nb0.01Fe0.97Mg0.03PO4/C的电化学性能最佳。室温下,0.2C、1C、2C、4C(1C=170mA·g-1)倍率充放电其首次放电比容量分别为153.7、149.7、144.6、126.4mAh·g-1,即使在8C倍率下放电其放电比容量也有92.2mAh·g-1,并表现出良好的循环性能。  相似文献   

3.
Li0.97Er0.01FePO4/C composite was prepared by solid-state reaction, using particle modification with amorphous carbon from the decomposition of glucose and lattice doping with supervalent cation Er3+. All samples were characterized by X-ray diffraction, scanning electron microscopy, multi-point Brunauer Emmett and Teller methodes. The electrochemical tests show Li0.97Er0.01FePO4/C composite obtains the highest discharge specific capacity of 154 mAh g−1 at C/10 rate and the best rate capability. Its specific capacity reaches 131 mAh g−1 at 2C rate. Its capacity loss is only 14.9 % when the rate varies from C/10 to 2C.  相似文献   

4.
Nanosized carbon-coated Li1−3x La x FePO4 composites were synthesized using a fast, easy, microwave assisted, room-temperature, solid-state method. A lanthanum precursor was used to improve the electronic conductivity of LiFePO4. The particle structure of the as-synthesized samples was observed using transmission electron microscopy. The results indicated that a uniform and continuous carbon layer was formed on the surface of Li1−3x La x FePO4 particles. Electrochemical techniques, such as cyclic voltammetry, charge/discharge test, and electrochemical impedance spectroscopy were used to investigate the electrochemical performance of the samples. The results of electrochemical measurements revealed that the carbon coating and lanthanum doping provided an initial discharge capacity of 145 mA h/g with excellent rate capacity and long cycling stability. These advantages, coupled with the low cost, the high thermal stability, and the environmental friendliness of the raw materials, render Li1−3x La x FePO4/C composites attractive for practical and large-scale applications.  相似文献   

5.
In this paper we report on the possibility of Li substitution by M2+ to various high degrees in LiMPO4 olivine‐type compounds (M = Ni, Co, Fe, Mn), depending on the kind of transition metal M. The experimental studies were carried through by reacting stoichiometric amounts of LiMIIPO4 and MII1.5PO4 (= MII3(PO4)2) to form compounds of composition LixMII1.5–x/2PO4 (0 ≤ x ≤ 1). A complete solid solution over the whole range of x was found for M = Ni (together with a second order structural transition from orthorhombic to monoclinic for decreasing x), whereas far smaller degrees of dopability of the Li site were found for LiCoPO4 and LiFePO4 (up to compositions of approx. (Li0.8Co0.1)CoPO4 and approx. (Li0.9Fe0.05)FeO4. In addition, the nearly stoichiometric monoclinically distorted olivine‐type compounds with compositions (Li0.42–0.47Co0.29–0.265)CoPO4 and (Li0.14–0.16Fe0.43–0.42)FePO4 could be identified and are described in this article.  相似文献   

6.
Li1 − x K x FePO4/C (x = 0, 0.03, 0.05, and 0.07) composites were synthesized at 700 °C in an argon atmosphere by carbon thermal reduction method. Based on X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analysis, the composite was ultrafine sphere-like particles with 100–300 nm size, and the lattice structure of LiFePO4 was not destroyed by K doping, while the lattice volume was enlarged. The electrochemical properties were investigated by four-point probe conductivity measurements, galvanostatic charge and discharge tests, cyclic voltammetry and electrochemical impedance spectroscopy. The results indicated that the capacity performance at high rate and cyclic stability were improved by doping an appropriate amount of K, which might be ascribed to the fact that the doped K ion expands Li ion diffusion pathway. Among the doped materials, the Li0.97K0.03FePO4/C samples exhibited the best electrochemical activity, with the initial discharge capacity of 153.7 mAh g−1 at 0.1 C and the capacity retention rate of about 92% after 50 cycles at above 1 C, 11% higher than undoped sample. Remarkably, it still showed good cycle retention at a high current rate of 10 C.  相似文献   

7.
钛掺杂的非化学计量LiFePO4的合成与电化学性能研究   总被引:2,自引:0,他引:2  
0 Introduction Phospho-olivine LiFePO4 as a prom ising cathode m aterialforlithium ion batteries has aroused consider- able interests due to its low cost, benign for environ- m ent, high tem perature capability and relatively high energy density[1,2]. Ith…  相似文献   

8.
Ternary oxides of Li-Fe-Mn-O system with overstoichiometric spinel structure Li1+xMn1-yFeyO4, have been synthesized. The effect of composition and synthesis temperature on the electrochemical performance of the oxides as a material of positive electrodes of Li-ion batteries has been studied. The optimal temperature of synthesis was found to be 850 °C for the composition Li1.2Mn1.6Fe0.4O4. This oxide shows good reversibility at acceptable level of capacity near 105 mAh/g.Presented at the 3rd International Meeting "Advanced Batteries and Accumulators", June 16th–20th 2002, Brno, Czech Republic  相似文献   

9.
LiFePO4/C material has been prepared using fast-melt synthesis method followed by grinding and carbon coating. The low-cost iron ore concentrate (IOC) and purified iron ore concentrate (IOP) were used as iron precursors in the melt process to reduce significantly the cost of LiFePO4/C. The same product was also synthesized using pure Fe2O3 under similar conditions as reference. The physical-chemical and electrochemical properties of samples were investigated. The X-ray Diffraction (XRD) results confirm the formation of an olivine structure of LiFePO4 with a minor amount of Li3PO4 and Li4P2O7 impurities for all the samples but no Fe2P. The power performances of LiFePO4/C using low-cost iron precursors were close to the sample using pure Fe2O3 precursor although capacity in mAh g?1 is somewhat lower. With the inherent presence of silicon and other metals species, multi-substitution may take place when using IOC as source of iron leading to a Li(Fe1-yMy)(P1-xSix)O4 general composition. Multi-substitution, however, allows a better cycling stability. Therefore, these iron precursors present a promising option in this field to reduce the cost of a large-scale synthesis of LiFePO4/C for Li-ion batteries application.  相似文献   

10.
The macroporous Li3V2(PO4)3/C composite was synthesized by oxalic acid-assisted carbon thermal reaction, and the common Li3V2(PO4)3/C composite was also prepared for comparison. These samples were characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and electrochemical performance tests. Based on XRD and SEM results, the sample has monoclinic structure and macroporous morphology when oxalic acid is introduced. Electrochemical tests show that the macroporous Li3V2(PO4)3/C sample has a high initial discharge capacity (130 mAh g−1 at 0.1 C) and a reversible discharge capacity of 124.9 mAh g−1 over 20 cycles. Moreover, the discharge capacity of the sample is still 91.5 mAh g−1, even at a high rate of 2 C, which is better than that of the sample with common morphology. The improvement in electrochemical performance should be attributed to its improved lithium ion diffusion coefficient for the macroporous morphology, which was verfied by cyclic voltammetry and electrochemical impedance spectroscopy.  相似文献   

11.
Lithium iron phospho-olivine cathode material with optimized lithium amount for lithium-ion batteries was successfully prepared from low cost Fe2O3 as raw materials by thermal reduction method. The as-obtained material showed a reversible discharge capacity of 153.8 mAh g–1 in the voltage window of 2.0–4.2 V at half-cell level. The pouch-typed cells with prepared Li1.05FePO4 were assembled to investigate electrochemical performance at level of full-cell. The results show that the assembled pouch-typed full-cells present better rate capability and cycle life. The low-cost approach reported here firstly sheds light on application of mass production of olivinestructured LiFePO4 at level of full-cell.  相似文献   

12.
A series of Cr-doped Li3V2???x Cr x (PO4)3 (x?=?0, 0.1, 0.25, and 0.5) samples are prepared by a sol–gel method. The effects of Cr doping on the physical and chemical characteristics of Li3V2(PO4)3 are investigated. Compared with the XRD pattern of the undoped sample, the XRD patterns of the Cr-doped samples have no extra reflections, which indicates that Cr enters the structure of Li3V2(PO4)3. As indicated by the charge–discharge measurements, the Cr-doped Li3V2???x Cr x (PO4)3 (x?=?0.1, 0.25, and 0.5) samples exhibit lower initial capacities than the undoped sample at the 0.2 C rate. However, both the discharge capacity and cycling performance at high rates (e.g., 1 and 2 C) are enhanced with proper amount of Cr doping (x?=?0.1). The highest discharge capacity and capacity retention at the rates of 1 and 2 C are obtained for Li3V1.9Cr0.1(PO4)3. The improvement of the electrochemical performance can be attributed to the higher crystal stability and smaller particle size induced by Cr doping.  相似文献   

13.
Li4Ti5O12/Li2TiO3 composite nanofibers with the mean diameter of ca. 60 nm have been synthesized via facile electrospinning. When the molar ratio of Li to Ti is 4.8:5, the Li4Ti5O12/Li2TiO3 composite nanofibers exhibit initial discharge capacity of 216.07 mAh g?1 at 0.1 C, rate capability of 151 mAh g?1 after being cycled at 20 C, and cycling stability of 122.93 mAh g?1 after 1000 cycles at 20 C. Compared with pure Li4Ti5O12 nanofibers and Li2TiO3 nanofibers, Li4Ti5O12/Li2TiO3 composite nanofibers show better performance when used as anode materials for lithium ion batteries. The enhanced electrochemical performances are explained by the incorporation of appropriate Li2TiO3 which could strengthen the structure stability of the hosted materials and has fast Li+-conductor characteristics, and the nanostructure of nanofibers which could offer high specific area between the active materials and electrolyte and shorten diffusion paths for ionic transport and electronic conduction. Our new findings provide an effective synthetic way to produce high-performance Li4Ti5O12 anodes for lithium rechargeable batteries.  相似文献   

14.
Layered Ti-doped lithiated nickel cobaltate, LiNi0.8Co0.2 − xTixO2 (where x = 0.01, 0.03, and 0.05) nanopowders were prepared by wet-chemistry technique. The structural properties of synthesized materials were characterized by X-ray diffraction (XRD) and thermo-gravimetric/differential thermal analysis (TG/DTA). The morphological changes brought about by the changes in composition of LiNi0.8Co0.2 − xTixO2 particles were examined through surface examination techniques such as scanning electron microscopy (SEM) and transmission electron microscopy (TEM) analyses. Electrochemical studies were carried out using 2016-type coin cell in the voltage range of 3.0–4.5 V (vs carbon) using 1 M LiClO4 in ethylene carbonate and diethyl carbonate as the electrolyte. Among the various concentrations of Ti-doped lithiated nickel cobaltate materials, C/LiNi0.8Co0.17Ti0.03O2 cell gives stable charge–discharge features.  相似文献   

15.
A series of Li3V2(PO4)3/C composites with different amounts of carbon are synthesized by a combustion method. The physical and electrochemical properties of the Li3V2(PO4)3/C composites are investigated by X-ray diffraction, element analysis, Raman spectroscopy, scanning electron microscopy, transmission electron microscopy and electrochemical measurements. The effects of carbon content of Li3V2(PO4)3/C composites on its electrochemical properties are conducted with cyclic voltammetry and electrochemical impedance. The experiment results clearly show that the optimal carbon content is 4.3 wt %, and more or less amount of carbon would be unfavorable to electrochemical properties of the Li3V2(PO4)3/C electrode materials. The results would provide some basis for further improvement on the Li3V2(PO4)3 electrode materials.  相似文献   

16.
锂离子电池负极材料Li_(4-x)K_xTi_5O_(12)结构和电化学性能   总被引:1,自引:0,他引:1  
采用固相反应的方法制备了尖晶石型Li4Ti5O12和K掺杂Li4-xKxTi5O12(x=0.02,0.04,0.06)。通过XRD、SEM、BET等对制备材料进行了分析。结果表明,K掺杂没有影响立方尖晶石型Li4Ti5O12的合成,同时也没有改变Li4Ti5O12的电化学反应过程。K掺杂Li4-xKxTi5O12具有比Li4Ti5O12小的颗粒粒径和比Li4Ti5O12大的比表面积、孔容积。适量的K掺杂能够明显改善Li4Ti5O12的电化学性能,尤其是倍率性能,但是过多的K掺杂却不利于材料电化学性能的提高。研究表明,Li3.96K0.04Ti5O12体现了相对较好的倍率性能和循环稳定性。0.5C下,首次放电比容量为161mAh·g-1,3.0和5.0C下,容量保持分别为138和121mAh·g-1。3.0C下,200次循环后容量保持为137mAh·g-1。  相似文献   

17.
The effect of fluorine doping on the electrochemical performance of LiFePO4/C cathode material is investigated. The stoichiometric proportion of LiFe(PO4)1−x F3x /C (x = 0.01, 0.05, 0.1, 0.2) materials was synthesized by a solid-state carbothermal reduction route at 650 °C using NH4F as dopant. X-ray diffraction, scanning electron microscope, energy-dispersive X-ray, and X-ray photoelectron spectroscopy analyses demonstrate that fluorine can be incorporated into LiFePO4/C without altering the olivine structure, but slightly changing the lattice parameters and having little effect on the particle sizes. However, heavy fluorine doping can bring in impurities. Fluorine doping in LiFePO4/C results in good reversible capacity and rate capability. LiFe(PO4)0.95 F0.15/C exhibits highest initial capacity and best rate performance. Its discharge capacities at 0.1 and 5 C rates are 156.1 and 119.1 mAh g−1, respectively. LiFe(PO4)0.95 F0.15/C also presents an obviously better cycle life than the other samples. We attribute the improvement of the electrochemical performance to the smaller charge transfer resistance (R ct) and influence of fluorine on the PO43− polyanion in LiFePO4/C.  相似文献   

18.
The novel Li3V2(PO4)3 glass-ceramic nanocomposites were synthesized and investigated as electrodes for energy storage devices. They were fabricated by heat treatment (HT) of 37.5Li2O–25V2O5–37.5P2O5?mol% glass at 450 °C for different times in the air. XRD, SEM, and electrochemical methods were used to study the effect of HT time on the nanostructure and electrochemical performance for Li3V2(PO4)3 glass-ceramic nanocomposites electrodes. XRD patterns showed forming Li3V2(PO4)3 NASICON type with monoclinic structure. The crystalline sizes were found to be in the range of 32–56 nm. SEM morphologies exhibited non-uniform grains and changed with variation of HT time. The electrochemical performance of Li3V2(PO4)3 glass-ceramic nanocomposites was investigated by using galvanostatic charge/discharge methods, cyclic voltammetry, and electrochemical impedance spectroscopy in 1 M H2SO4 aqueous electrolyte. The glass-ceramic nanocomposites annealed for 4 h, which had a lower crystalline size, exhibited the best electrochemical performance with a specific capacity of 116.4 F g?1 at 0.5 A g?1. Small crystalline size supported the lithium ion mobility in the electrode by decreasing the ion diffusion pathway. Therefore, the Li3V2(PO4)3 glass-ceramic nanocomposites can be promising candidates for large-scale industrial applications in high-performance energy storage devices.  相似文献   

19.
Effects of heteroatoms on doped LiFePO4/C composites   总被引:1,自引:0,他引:1  
A series of supervalent cation doped Li1–x M0.01Fe0.99PO4/C composites (M?=?Ti, Zr, V, Nb, and W) were synthesized by solid-state reaction. The effects of the heteroatoms were studied by X-ray diffraction, cyclic voltammetry, and electrochemical impedance measurement. After doping, the lattice structure of LiFePO4 is not destroyed and the reversibility of lithium ion intercalation and deintercalation is improved. The diffusion coefficient of lithium ions depends on the radius of the heteroatoms. As the radius of the heteroatom is larger, the diffusion coefficient increases.  相似文献   

20.
Heterosite FePO4 is synthesized for the first time by direct thermal oxidation of sarcopside Fe3(PO4)2. Both FePO4 and Fe3(PO4)2 have a pseudo olivine structure. Complete isostructural conversion of sarcopside into FePO4 is achieved at a temperature of 450 °C within 3 days according to the reaction Fe3(PO4)2 + ¾ O2 → 2 FePO4 + ½ Fe2O3 which leads to the extraction of iron from the sarcopside structure. Appropriate heating ramp must be applied in order to avoid the crystallization of Fe7(PO4)6. Electrochemical performances of the oxidation product are consistent with those of olivine FePO4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号