首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Quartz crystal microbalance (QCM) biosensors for recombinant human interferon-β (rhIFN-β) were constructed by utilizing antisense peptides adhering to the QCM gold surfaces. Two antisense peptides, both corresponding to the N-terminal fragment 1-14 of rhIFN-β, were used in this study. Antisense peptide AS-1 was the original antisense peptide and AS-2 was the modified antisense peptide based on the antisense peptide degeneracy. Both antisense peptides were immobilized on the gold electrodes of piezoelectric crystals, respectively, via a self-assembling monolayer of 1,2-ethanedithiol. The binding affinity between rhIFN-β and each immobilized antisense peptide in solution was evaluated using a quartz crystal microbalance-flow injection analysis (QCM-FIA) system. The dissociation constant of rhIFN-β on the antisense peptide AS-1 and AS-2 biosensor was (1.89 ± 0.101) × 10−4 and (1.22 ± 0.0479) ×10−5 mol L−1, respectively. The results suggested that AS-2 had a higher binding affinity to rhIFN-β than AS-1. The detection for rhIFN-β using each biosensor was precise and reproducible. The linear response ranges of rhIFN-β binding to both biosensors were same with a concentration range of 0.12-0.96 mg mL−1. The results demonstrated the successful construction of highly selective QCM biosensors using antisense peptide approach, and also confirmed the feasibility of increasing antisense peptide binding affinity by appropriate sequence modification.  相似文献   

2.
This study attempted to determine absolute heparin concentration in phosphate buffer solution (PBS, pH 7.4) by using quartz crystal microbalance (QCM) as an affinity biosensor. Electrochemical impedance spectroscopy (EIS) was also used to investigate immobilization of protamine and heparin assay. In addition, the effectiveness of physical adsorption in immobilizing protamine was confirmed by examining the preparation conditions, including the incubation time and protamine concentration. It induced maximum decrease (ca. −100 Hz) in oscillating frequency of QCM by applying 20 mg/ml protamine and 20 min for incubation in PBS. Heparin adsorption onto protamine-modified electrode in PBS revealed an exponential-like binding curve and long duration for reaching the steady state in frequency response of QCM. Moreover, two linear calibration curves were obtained judging from the initial slope (df/dt) and the frequency change (Δf) of QCM obtained after a binding interval (600 s) for heparin concentrations from 0 to 3.0 and 7.0 U/ml, respectively. In EIS analysis, calibration curves with linear concentration range of 0-3.0 U/ml were obtained for heparin in PBS when ferrocyanide was used as an electroactive marker.  相似文献   

3.
C. March  Y. Jiménez  A. Montoya 《Talanta》2009,78(3):827-1971
A quartz crystal microbalance (QCM) immunosensor was developed for the determination of the insecticide carbaryl and 3,5,6-trichloro-2-pyridinol (TCP), the main metabolite of the insecticide chlorpyrifos and of the herbicide triclopyr. The detection was based on a competitive conjugate-immobilized immunoassay format using monoclonal antibodies (MAbs). Hapten conjugates were covalently immobilized, via thioctic acid self-assembled monolayer (SAM), onto the gold electrode sensitive surface of the quartz crystal. This covalent immobilization allowed the reusability of the modified electrode surface for at least one hundred and fifty assays without significant loss of sensitivity. The piezoimmunosensor showed detection limits (analyte concentrations producing 10% inhibition of the maximum signal) of 11 and 7 μg l−1 for carbaryl and TCP, respectively. The sensitivity attained (I50 value) was around 30 μg l−1 for both compounds. Linear working ranges were 15-53 μg l−1 for carbaryl and 13-83 μg l−1 for TCP. Each complete assay cycle took 20 min. The good sensitivity, specificity, and reusability achieved, together with the short response time, allowed the application of this immunosensor to the determination of carbaryl and TCP in fruits and vegetables at European regulatory levels, with high precision and accuracy.  相似文献   

4.
5.
Disposable biosensors for determination of biogenic amines   总被引:1,自引:0,他引:1  
This work reports monoamine oxidase (MAO)/horseradish peroxidase (HRP) and diamine oxidase (DAO)/horseradish peroxidase (HRP) based biosensors using screen-printed carbon electrodes for the determination of biogenic amines (BA). The enzymes have been covalently immobilized onto the carbon working electrode, previously modified by an aryl diazonium salt, using hydroxysuccinimide and carbodiimide. The detection has been performed by measuring the cathodic current due to the reduction of the mediator hydroxymethylferrocene at a low potential, 250 mV vs screen-printed Ag/AgCl reference electrode. The experimental conditions for the enzymes immobilization, as well as for the main variables that can influence the chronoamperometric current have been optimized by the experimental design methodology. Under these optimum conditions, the disposable biosensors have been characterized. A linear response range from 0.2 up to 1.6 μM and from 0.4 to 2.4 μM of histamine was obtained for DAO/HRP and MAO/HRP based biosensors, respectively. The biosensor construction was highly reproducible, yielding relative standard deviations of 10% and 11% in terms of sensitivity for DAO/HRP and MAO/HRP based biosensors, respectively. The capability of detection, 0.18 ± 0.01 μM in the case of DAO/HRP and 0.40 ± 0.04 μM (α = 0.05 and β = 0.005) for MAO/HRP based biosensors, and the biosensor sensitivity towards different BA has also been analyzed. Finally, the developed biosensors have been applied to the determination of the total amine content in fish samples.  相似文献   

6.
We report the synthesis and the electrochemical properties of hybrid films made of zinc oxide (ZnO) and Meldola's blue dye (MB) using cyclic voltammetry (CV). MB/ZnO hybrid films were electrochemically deposited onto glassy carbon, gold and indium tin oxide-coated glass (ITO) electrodes at room temperature (25 ± 2 °C) from the bath solution containing 0.1 M Zn(NO3)2, 0.1 M KNO3 and 1 × 10−4 M MB. The surface morphology and deposition kinetics of MB/ZnO hybrid films were studied by means of scanning electron microscopy (SEM), atomic force microscopy (AFM) and electrochemical quartz crystal microbalance (EQCM) techniques, respectively. SEM and AFM images of MB/ZnO hybrid films have revealed that the surfaces are well crystallized, porous and micro structured. MB molecules were immobilized and strongly fixed in a transparent inorganic matrix. MB/ZnO hybrid films modified glassy carbon electrode (MB/ZnO/GC) showed one reversible redox couple centered at formal potential (E0′) −0.12 V (pH 6.9). The surface coverage (Γ) of the MB immobilized on ZnO/GC was about 9.86 × 10−12 mol cm−2 and the electron transfer rate constant (ks) was determined to be 38.9 s−1. The MB/ZnO/GC electrode acted as a sensor and displayed an excellent specific electrocatalytic response to the oxidation of nicotinamide adenine dinucleotide (NADH). The linear response range between 50 and 300 μM NADH concentration at pH 6.9 was observed with a detection limit of 10 μM (S/N = 3). The electrode was stable during the time it was used for the full study (about 1 month) without a notable decrease in current. Indeed, dopamine (DA), ascorbic acid (AA), acetaminophen (AP) and uric acid (UA) did not show any interference during the detection of NADH at this modified electrode.  相似文献   

7.
A new human ferritin immunosensor was developed using anti-human ferritin antibodies (Abs) immobilized on the gold disc of a quartz crystal microbalance (QCM). Two kinds of self-assembled monolayers (SAMs) prepared by cystamine-glutaraldehyde and cystamine method were applied to immobilize anti-ferritin monoclonal antibodies (MoAbs) and polyclonal antibodies (PoAbs) on the quartz, respectively. The reusabilities of quartz crystal adopting the SAMs were found to be better than those of the other immobilization methods used. The 10 cycles of measurements could be performed on the gold surface of the same crystal regenerated with a solution of glycine·HC1. This sensor system could be continuously performed for 15 days, the relative frequency shifts (the frequency shifts measured are relative to the response at the first day) were all found to be above 95%. A linear relationship existed between the frequency shifts (Hz) and the log values of human ferritin concentrations in the range from 0.1 to 100 ng/ml in buffer and mouse serum. This human ferritin immunosensor had some advantages: high sensitivity, high specificity, low sample requirement, high reusability, no label and no pretreatment etc.  相似文献   

8.
The design and characterization of a lactate biosensor and its application to the determination of this analyte in wine and beer are described. The biosensor is developed through the immobilization of lactate oxidase (LOx) using two different strategies including direct adsorption and covalent binding. The characterization of the resulting lactate oxidase monolayers was performed in aqueous phosphate buffer solutions using atomic force microscopy (AFM) and quartz crystal microbalance (QCM) techniques. In presence of lactate and using hydroxymethylferrocene as a redox mediator, biosensors obtained by either direct adsorption or by covalent binding exhibit a clear electrocatalytic activity, and lactate could be determined amperometrically at 300 mV versus SSCE. Results obtained under these conditions give a linear current response versus lactate concentration up to 0.3 mM, with a detection limit of 10 μM of lactate and a sensitivity of 0.77 ± 0.08 μA mM−1. Finally, biosensors were applied to the determination of lactate in wine and beer. The results obtained are in good agreement with those obtained by a well-established enzymatic-spectrophotometric assay kit.  相似文献   

9.
This work investigated the application of a porous polyaniline (PANi) membrane as a conducting polymeric membrane as well as an electrode in an iontophoretic transdermal drug delivery (TDD) system. Model drugs studied were: caffeine (MW: 194.2), lidocaine HCl (MW: 270.8) and doxycycline HCl (MW: 480.1). The PANi membrane was first tested as a simple membrane between the donor and receptor solutions; it provided satisfactory permeation profiles; the observed flux values were well described by a simplified mass transport model. A mouse skin was then mounted beneath the PANi film; such a composite system also presented satisfactory permeation profiles. Iontophoretic TDD experiments were next performed using both Ag|AgCl electrodes and PANi|AgCl electrodes for comparison; a PANi anode replaced the Ag anode in the last set. For doxycycline HCl, the flux and the 24-h accumulation from the PANi|AgCl set were 94.4 ± 81.2 μg/cm2 h and 2760 ± 3980 μg/cm2, respectively; those from the Ag|AgCl set were zero. For lidocaine HCl, the flux and 10-h accumulation from the PANi|AgCl set were, respectively, 43 ± 15 μg/cm2 h and 392 ± 130 μg/cm2; the corresponding values from the Ag|AgCl set were 48 ± 20 μg/cm2 h and 348 ± 78 μg/cm2. Porous polyaniline membrane appears to be capable of replacing the Ag part of Ag|AgCl electrode system; further such a membrane can exercise additional control over agent transport rate. Aqueous-organic partitioning system through the porous membrane of PANi was tested with this novel technique as well. Because of the rather low porosity of the synthesized PANi film, such a system did not yield a high permeation rate.  相似文献   

10.
A quartz crystal microbalance DNA biosensor based on plasma prepared polythiophene /titanium dioxide (PT/TiO2) nanocomposite was developed for the detection of genetically modified organisms (GMOs). DNA hybridization was studied by quartz crystal microbalance (QCM) and cyclic voltammetry (CV) measurements. Single stranded DNA probes were immobilized on the PT/TiO2 coated quartz crystal electrode and the hybridization between the immobilized probe and the target complementary sequence in solution was monitored. The developed QCM-DNA biosensor represented promising results for a real-time, label-free, direct detection of DNA samples for the screening of genetically modified organisms.  相似文献   

11.
Khuhawar MY  Arain GM 《Talanta》2006,68(3):535-541
Liquid chromatographic method has been developed, based on precolumn derivatization of vanadium(V) with 2-acetylpyridine-4-phenyl-3-thiosemicarbazone (APPT). The complex is extracted in chloroform together with palladium(II), tin(II) and iron(III) and eluted and separated completely from Kromasil 100 C-18, 10 μm (25 cm × 4.6 mm i.d.) column with methanol:water:acetonitrile (60:30:10, v/v/v) with a flow rate of 1 ml/min. UV detection was at 260 nm. Linear calibration curve was obtained with 1-12.5 μg/ml vanadium(V) with detection limit of 8 ng/injection (20 μl). A number of metal ions tested did not affect the determination of vanadium. The test mixtures were analyzed for vanadium(IV) and vanadium(V) contents and relative% error was obtained ±1-8%. The method was applied for the determination of vanadium in petroleum oils and mineral ore samples with vanadium contents of 0.32-2.3 and 121.7-717.3 μg/g with R.S.D. of 1.5-4.5 and 0.38-4.7%, respectively. The results correlated with reported values and by atomic absorption spectrophotometry.  相似文献   

12.
A novel biosensor for determination of d-amino acids (DAAs) in biological samples by using an electrode based on immobilization of a thermostable d-Proline dehydrogenase (d-Pro DH) within an agar gel membrane was developed. The electrode was simply prepared by spin-coating the agar solution with the d-Pro DH on a glassy carbon (GC) electrode.An electrocatalytic oxidation current of 2,6-dichloroindophenol (DCIP) was observed at −100 mV vs. Ag/AgCl with the addition of 5 and 20 mmol L−1d-proline. The current response and its relative standard deviation were 0.15 μA and 7.6% (n = 3), respectively, when it was measured in a pH 8.0 phosphate buffer solution containing 10 mmol L−1d-proline and 0.5 mmol L−1 DCIP at 50 °C. The current response of d-proline increased with increase of the temperature of the sample solution up to 70 °C. The electrocatalytic response at the d-Pro DH/agar immobilized electrode subsequently maintained for 80 days. Finally, the d-Pro DH/agar immobilized electrode was applied to determination of DAAs in a human urine sample. The determined value of DAAs in the human urine and its R.S.D. were 1.39 ± 0.12 mmol L−1 and 8.9% (n = 3), respectively.  相似文献   

13.
A high performance liquid chromatographic method (HPLC) for the simultaneous determination of 4-nonylphenol, bisphenol A, 17α-ethinylestradiol and three endogenic estrogens including 17α-estradiol, 17β-estradiol, estriol in urine sample, based on precolumn derivatization with p-nitrobenzoyl chloride, is presented in this paper. The estrogens mentioned above in urine were firstly hydrolyzed with 0.6 mol/l HCl, and then enriched and cleaned-up by ENV-18 C18 solid phase extraction (SPE) column. The estrogens on column were eluted with dichloromethane, and the eluent was evaporated to dryness under gentle nitrogen flow. The residue was allowed to react with p-nitrobenzoyl chloride at 25 °C for 30 min. Separation was performed on a C18 column with gradient elution using acetonitrile and water as mobile phase. A fluorescence detection system was used to detect the fluorescent derivatization products. The detection limit of the method was 2.7 μg/l for bisphenol A and 17β-estradiol, 2.9 μg/l for 4-nonylphenol, 4.6 μg/l for 17α-estradiol and 17α-ethinylestradiol and 8.3 μg/l for estriol, respectively. The relative standard deviations (R.S.D.) ranged from 1.29 to 4.52% and the recoveries ranged from 85.5 to 99.9%. The method was applied to the determination of those six estrogens mentioned above in human urine samples collected from 20 healthy volunteers (aged 21-29). Bisphenol A (BPA) and 4-nonylphenol (NP) were detected with average contents of 1.22 ± 1.38 mg/l and 0.38 ± 0.77 mg/l in 10 male urine samples and 1.29 ± 1.22 mg/l and 0.05 ± 0.05 mg/l in 10 female urine samples, respectively. 17α-ethinylestradiol (α-EE2) was also detected with average contents of 0.13 ± 0.41 mg/l and 0.06 ± 0.15 mg/l in male and female urine samples, respectively.  相似文献   

14.
A selective detection method for dopamine (DA) was developed by incorporating cibacron blue (F3GA) into poly-1,5-diaminonaphthalene (PDAN) layer. Scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), and cyclic voltammetry (CV) were employed to characterize the modified surfaces. The modified electrode was effective in selectively facilitating the electron transfer of DA and blocking the interferences of negatively charged species attributed to the sulfonate groups in the F3GA/PDAN composite film. This method enabled the determination of DA in the presence of various interfering species, including ascorbic acid (AA), in a phosphate buffer solution (pH 7.4). The modified electrode demonstrated good performance in the detection of DA in a concentration range of 5.0-100 μM, with a detection limit (k = 3) of 0.1 ± 0.01 μM. The application was conducted for the determination of DA in a human urine sample and the sensor was proven to be rapid, has excellent selectivity, and stable amperometric response.  相似文献   

15.
A new tetrazolium-triiodomercurate-modified carbon paste electrode has been described for the sensitive and selective determination of mercury. The electrode shows a stable, near-Nernstian response for 1×10−3 to 6×10−6 M [HgI3] at 25 °C over the pH range of 4.0-9.0, with an anionic slope of 55.5±0.4 mV. The lower detection limit is 4×10−6 M with a fast response time of 30-50 s. Selectivity coefficients of a number of interfering anions and iodo complexes of some metal ions have been estimated. The interference from many of the investigated ions is negligible. The determination of 1-200 μg/ml of mercury in aqueous solutions shows an average recovery of 98.5% and a mean relative standard deviation of 1.6% at 50.0 μg/ml. The direct determination of mercury in spiked wastewater, metal amalgams and dental alloy gave results that compare favorably with those obtained by the cold vapor atomic absorption spectrometric method. Potentiometric titration of mercury and phenylmercury acetate with standard potassium iodide has been monitored using the developed triiodomercurate-carbon paste electrode (CPE) as an end point indicator electrode.  相似文献   

16.
A novel chemiluminscence (CL) flow-through sensor for pipemidic acid is described. It was based on the sensitizing effect of pipemidic acid on the CL oxidation of sulfite by sodium bismuthate in H2SO4 media. The solid-phase sodium bismuthate was mechanicially immobilized on the sponge rubber inside of the CL flow cell as CL oxidant. The calibration graph is linear in the range 0.1-10 μg/ml with a detection limit of 6.2×10−8 g/ml (3σ). A complete analysis could be performed in 1 min with a relative standard deviation (R.S.D.) of 2.5% for 2 μg/ml pipemidic acid (n=8). This method has been successfully applied to determine pipemidic acid in pharmaceutical preparation.  相似文献   

17.
Y?ld?z Uluda? 《Talanta》2010,82(1):277-383
A simple and sensitive sensor method for cancer biomarkers [prostate specific antigen (PSA) and PSA-alpha 1-antichymotrypsin (ACT) complex] analysis was developed, to be applied directly with human serum (75%) by using antibody modified quartz crystal microbalance sensor and nanoparticles amplification system. A QCM sensor chip consisting of two sensing array enabling the measurement of an active and control binding events simultaneously on the sensor surface was used in this work. The performance of the assay and the sensor was first optimised and characterised in pure buffer conditions before applying to serum samples. Extensive interference to the QCM signal was observed upon the analysis of serum. Different buffer systems were then formulated and tested for the reduction of the non-specific binding of sera proteins on the sensor surface. A PBS buffer containing 200 μg mL−1 BSA, 0.5 M NaCl, 500 μg mL−1 dextran and 0.5% Tween 20, was then selected which eliminated the interfering signal by 98% and enabled the biomarker detection assay to be performed in 75% human serum. By using Au nanoparticles to enhance the QCM sensor signal, a limit of detection of 0.29 ng mL−1 PSA and PSA-ACT complex (in 75% serum) with a linear dynamic detection range up to 150 ng mL−1 was obtained. With the achieved detection limit in serum samples, the developed QCM assay shows a promising technology for cancer biomarker analysis in patient samples.  相似文献   

18.
Linezolid (Zyvox), an oxazolidinones antibiotic, was developed for the treatment of infectious diseases caused by gram-positive pathogens. To investigate the mechanism of hepatobiliary excretion of linezolid, a parallel study design used two groups; in the control group, rats received linezolid alone (3 or 10 mg/kg, i.v.). In the drug-treated groups, 10 min prior to linezolid administration, cyclosporin A (CsA; 10 mg/kg, i.v.), a P-glycoprotein (P-gp) inhibitor, was given in the rats. The microdialysis probes were implanted into the jugular vein toward right atrium and the bile duct of Sprague-Dawley rats for multiple biological fluid sampling. Separation was performed using a reversed phase C18 (4.6 mm × 150 mm i.d., 5 μm) with mobile phase of acetonitrile-methanol-1% 1-octanesulfonic acid in water of 30:10:60 (v/v/v) at flow rate of 1 ml/min. The UV detection for linezolid was set at a wavelength of 260 nm. Following linezolid (10 mg/kg, i.v.) administration, the concentration of linezolid in the brain was less than the limit of quantification and the area-under the concentration curve versus time curve (AUC) of blood and bile were 1780 ± 50 and 2850 ± 276 (min μg/ml), respectively. The bile-to-blood distribution ratio was 1.6 ± 0.2 (n = 6), which was defined as AUCbile/AUCblood. The results demonstrated that the transportation of linezolid into bile might be mediated by active transport. However, after treatment with CsA, the linezolid AUC in bile was 3060 ± 411 (min μg/ml) which did not indicate a significant difference with linezolid alone. These results suggest that the hepatobiliary excretion of linezolid might not be regulated by P-gp transportation.  相似文献   

19.
A study of biospecific interactions between lectins and glycoproteins using a quartz crystal microbalance biosensor with dissipation monitoring (QCM-D) was reported. Four lectins were covalently immobilised on the thiol-modified gold electrode of the QCM chips in order to obtain sensing surfaces. The frequency shift served as analytical signal and the dissipation shift provided additional information about the viscoelastic properties of the glycoprotein-lectin complex formed on the surface of the QCM chip. The working conditions of the assay were optimised. The interaction between different lectins and glycoproteins was characterised by specific frequency shifts and each glycoprotein displayed its own unique lectin-binding pattern. This lectin pattern can serve as a finger print for the discrimination between various glycoproteins. The biosensor enabled quantitative determination of glycoproteins in the concentration range of 50 μg mL−1 to 1 mg mL−1 with good linearity and R.S.D. of less than 6.0%. An additional advantage of the proposed biosensor was the possibility to re-use the same lectin surfaces during a long period of time (2 month) without changes in analytical response. This was experimentally achieved by the application of a proper regeneration solution (10 mM glycine-HCl, pH 2.5). The lectin-based quartz crystal microbalance technique is suitable both for rapid screening and for quantitative assay of serum glycoproteins.  相似文献   

20.
A highly sensitive NOx sensor was designed and developed by electrochemical incorporation of copper nanoparticles (CuNP) on single-walled carbon nanotubes (SWCNT)-polypyrrole (PPy) nanocomposite modified Pt electrode. The modified electrodes were characterized by scanning electron microscopy and energy dispersive X-ray analysis. Further, the electrochemical behavior of the CuNP-SWCNT-PPy-Pt electrode was investigated by cyclic voltammetry. It exhibited the characteristic CuNP reversible redox peaks at −0.15 V and −0.3 V vs. Ag/AgCl respectively. The electrocatalytic activity of the CuNP-SWCNT-PPy-Pt electrode towards NOx is four-fold than the CuNP-PPy-Pt electrode. These results clearly revealed that the SWCNT-PPy nanocomposite facilitated the electron transfer from CuNP to Pt electrode and provided an electrochemical approach for the determination of NOx. A linear dependence (r2 = 0.9946) on the NOx concentrations ranging from 0.7 to 2000 μM, with a sensitivity of 0.22 ± 0.002 μA μM−1 cm−2 and detection limit of 0.7 μM was observed for the CuNP-SWCNT-PPy-Pt electrode. In addition, the sensor exhibited good reproducibility and retained stability over a period of one month.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号