首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A class of important problems in structural mechanics leads to optimization problems with linear objective functions and constraints consisting in (a) linear equalities and (b) inequalities imposed by the material strength, the so-called failure criteria. It is shown that a wide variety of failure criteria can be represented as systems of either second-order cone or semidefinite constraints, giving rise to respective optimization problems. Work partially supported by Air Force grants.  相似文献   

2.
3.
In this paper, we propose a mechanism to tighten Reformulation-Linearization Technique (RLT) based relaxations for solving nonconvex programming problems by importing concepts from semidefinite programming (SDP), leading to a new class of semidefinite cutting planes. Given an RLT relaxation, the usual nonnegativity restrictions on the matrix of RLT product variables is replaced by a suitable positive semidefinite constraint. Instead of relying on specific SDP solvers, the positive semidefinite stipulation is re-written to develop a semi-infinite linear programming representation of the problem, and an approach is developed that can be implemented using traditional optimization software. Specifically, the infinite set of constraints is relaxed, and members of this set are generated as needed via a separation routine in polynomial time. In essence, this process yields an RLT relaxation that is augmented with valid inequalities, which are themselves classes of RLT constraints that we call semidefinite cuts. These semidefinite cuts comprise a relaxation of the underlying semidefinite constraint. We illustrate this strategy by applying it to the case of optimizing a nonconvex quadratic objective function over a simplex. The algorithm has been implemented in C++, using CPLEX callable routines, and two types of semidefinite restrictions are explored along with several implementation strategies. Several of the most promising lower bounding strategies have been implemented within a branch-and-bound framework. Computational results indicate that the cutting plane algorithm provides a significant tightening of the lower bound obtained by using RLT alone. Moreover, when used within a branch-and-bound framework, the proposed lower bound significantly reduces the effort required to obtain globally optimal solutions.  相似文献   

4.
Using recent progress on moment problems, and their connections with semidefinite optimization, we present in this paper a new methodology based on semidefinite optimization, to obtain a hierarchy of upper and lower bounds on linear functionals defined on solutions of linear partial differential equations. We apply the proposed method to examples of PDEs in one and two dimensions, with very encouraging results. We pay particular attention to a PDE with oblique derivative conditions, commonly arising in queueing theory. We also provide computational evidence that the semidefinite constraints are critically important in improving the quality of the bounds, that is, without them the bounds are weak. Research supported by the SMA-MI Talliance. Research partially supported by the SMA-MIT alliance and an NSF predoctoral fellowship.  相似文献   

5.
Semidefinite optimization is a strong tool in the study of NP-hard combinatorial optimization problems. On the one hand, semidefinite optimization problems are in principle solvable in polynomial time (with fixed precision), on the other hand, their modeling power allows to naturally handle quadratic constraints. Contrary to linear optimization with the efficiency of the Simplex method, the algorithmic treatment of semidefinite problems is much more subtle and also practically quite expensive. This survey-type article is meant as an introduction for a non-expert to this exciting area. The basic concepts are explained on a mostly intuitive level, and pointers to advanced topics are given. We provide a variety of semidefinite optimization models on a selection of graph optimization problems and give a flavour of their practical impact.  相似文献   

6.
We give a complete characterization of constant quadratic functions over an affine variety. This result is used to convexify the objective function of a general quadratic programming problem (Pb) which contains linear equality constraints. Thanks to this convexification, we show that one can express as a semidefinite program the dual of the partial Lagrangian relaxation of (Pb) where the linear constraints are not relaxed. We apply these results by comparing two semidefinite relaxations made from two sets of null quadratic functions over an affine variety.   相似文献   

7.
We propose a new approach to bound Boolean quadratic optimization problems. The idea is to re-express the Boolean constraints as one “spherical” constraint, whose dualization amounts to semidefinite least-squares problems. Studying this dualization provides an alternative interpretation of the sdp relaxation. It also reveals a new class of non-convex problems with no duality gap.  相似文献   

8.
In this paper, we try to solve the semidefinite program with box constraints. Since the traditional projection method for constrained optimization with box constraints is not suitable to the semidefinite constraints, we present a new algorithm based on the feasible direction method. In the paper, we discuss two cases: the objective function in semidefinite programming is linear and nonlinear, respectively. We establish the convergence of our algorithm, and report the numerical experiments which show the effectiveness of the algorithm.  相似文献   

9.
 We discuss convex optimization problems in which some of the variables are constrained to be finite autocorrelation sequences. Problems of this form arise in signal processing and communications, and we describe applications in filter design and system identification. Autocorrelation constraints in optimization problems are often approximated by sampling the corresponding power spectral density, which results in a set of linear inequalities. They can also be cast as linear matrix inequalities via the Kalman-Yakubovich-Popov lemma. The linear matrix inequality formulation is exact, and results in convex optimization problems that can be solved using interior-point methods for semidefinite programming. However, it has an important drawback: to represent an autocorrelation sequence of length $n$, it requires the introduction of a large number ($n(n+1)/2$) of auxiliary variables. This results in a high computational cost when general-purpose semidefinite programming solvers are used. We present a more efficient implementation based on duality and on interior-point methods for convex problems with generalized linear inequalities. Received: August 20, 2001 / Accepted: July 16, 2002 Published online: September 27, 2002 RID="★" ID="★" This material is based upon work supported by the National Science Foundation under Grant No. ECS-9733450.  相似文献   

10.
We present a decomposition-approximation method for generating convex relaxations for nonconvex quadratically constrained quadratic programming (QCQP). We first develop a general conic program relaxation for QCQP based on a matrix decomposition scheme and polyhedral (piecewise linear) underestimation. By employing suitable matrix cones, we then show that the convex conic relaxation can be reduced to a semidefinite programming (SDP) problem. In particular, we investigate polyhedral underestimations for several classes of matrix cones, including the cones of rank-1 and rank-2 matrices, the cone generated by the coefficient matrices, the cone of positive semidefinite matrices and the cones induced by rank-2 semidefinite inequalities. We demonstrate that in general the new SDP relaxations can generate lower bounds at least as tight as the best known SDP relaxations for QCQP. Moreover, we give examples for which tighter lower bounds can be generated by the new SDP relaxations. We also report comparison results of different convex relaxation schemes for nonconvex QCQP with convex quadratic/linear constraints, nonconvex quadratic constraints and 0–1 constraints.  相似文献   

11.
In this paper, vector variational inequalities (VVI) with matrix inequality constraints are investigated by using the image space analysis. Linear separation for VVI with matrix inequality constraints is characterized by using the saddle-point conditions of the Lagrangian function. Lagrangian-type necessary and sufficient optimality conditions for VVI with matrix inequality constraints are derived by utilizing the separation theorem. Gap functions for VVI with matrix inequality constraints and weak sharp minimum property for the solutions set of VVI with matrix inequality constraints are also considered. The results obtained above are applied to investigate the Lagrangian-type necessary and sufficient optimality conditions for vector linear semidefinite programming problems as well as VVI with convex quadratic inequality constraints.  相似文献   

12.
We present semidefinite relaxations for unconstrained non-convex quadratic mixed-integer optimization problems. These relaxations yield tight bounds and are computationally easy to solve for medium-sized instances, even if some of the variables are integer and unbounded. In this case, the problem contains an infinite number of linear constraints; these constraints are separated dynamically. We use this approach as a bounding routine in an SDP-based branch-and-bound framework. In case of a convex objective function, the new SDP bound improves the bound given by the continuous relaxation of the problem. Numerical experiments show that our algorithm performs well on various types of non-convex instances.  相似文献   

13.
Recently in Burer et al. (Mathematical Programming A, submitted), the authors of this paper introduced a nonlinear transformation to convert the positive definiteness constraint on an n × n matrix-valued function of a certain form into the positivity constraint on n scalar variables while keeping the number of variables unchanged. Based on this transformation, they proposed a first-order interior-point algorithm for solving a special class of linear semidefinite programs. In this paper, we extend this approach and apply the transformation to general linear semidefinite programs, producing nonlinear programs that have not only the n positivity constraints, but also n additional nonlinear inequality constraints. Despite this complication, the transformed problems still retain most of the desirable properties. We propose first-order and second-order interior-point algorithms for this type of nonlinear program and establish their global convergence. Computational results demonstrating the effectiveness of the first-order method are also presented.  相似文献   

14.
Solving semidefinite-quadratic-linear programs using SDPT3   总被引:3,自引:1,他引:2  
 This paper discusses computational experiments with linear optimization problems involving semidefinite, quadratic, and linear cone constraints (SQLPs). Many test problems of this type are solved using a new release of SDPT3, a Matlab implementation of infeasible primal-dual path-following algorithms. The software developed by the authors uses Mehrotra-type predictor-corrector variants of interior-point methods and two types of search directions: the HKM and NT directions. A discussion of implementation details is provided and computational results on problems from the SDPLIB and DIMACS Challenge collections are reported. Received: March 19, 2001 / Accepted: January 18, 2002 Published online: October 9, 2002 Mathematics Subject Classification (2000): 90C05, 90C22  相似文献   

15.
We establish in this paper optimal parametric Lagrangian dual models for box constrained quadratic program based on the generalized D.C. (difference between convex) optimization approach, which can be reformulated as semidefinite programming problems. As an application, we propose new valid linear constraints for rank-one relaxation.  相似文献   

16.
In this paper, we introduce a new dual program, which is representable as a semidefinite linear programming problem, for a primal convex minimax programming problem, and we show that there is no duality gap between the primal and the dual whenever the functions involved are sum-of-squares convex polynomials. Under a suitable constraint qualification, we derive strong duality results for this class of minimax problems. Consequently, we present applications of our results to robust sum-of-squares convex programming problems under data uncertainty and to minimax fractional programming problems with sum-of-squares convex polynomials. We obtain these results by first establishing sum-of-squares polynomial representations of non-negativity of a convex max function over a system of sum-of-squares convex constraints. The new class of sum-of-squares convex polynomials is an important subclass of convex polynomials and it includes convex quadratic functions and separable convex polynomials. The sum-of-squares convexity of polynomials can numerically be checked by solving semidefinite programming problems whereas numerically verifying convexity of polynomials is generally very hard.  相似文献   

17.
This article presents a family of semidefinite programming bounds, obtained by Lagrangian duality, for 0–1 quadratic optimization problems with linear or quadratic constraints. These bounds have useful computational properties: they have a good ratio of tightness to computing time, they can be optimized by a quasi-Newton method, and their final tightness level is controlled by a real parameter. These properties are illustrated on three standard combinatorial optimization problems: unconstrained 0–1 quadratic optimization, heaviest $k$ -subgraph, and graph bisection.  相似文献   

18.
This article studies some geometrical aspects of the semidefinite linear complementarity problem (SDLCP), which can be viewed as a generalization of the well-known linear complementarity problem (LCP). SDLCP is a special case of a complementarity problem over a closed convex cone, where the cone considered is the closed convex cone of positive semidefinite matrices. It arises naturally in the unified formulation of a pair of primal-dual semidefinite programming problems. In this article, we introduce the notion of complementary cones in the semidefinite setting using the faces of the cone of positive semidefinite matrices and show that unlike complementary cones induced by an LCP, semidefinite complementary cones need not be closed. However, under R 0-property of the linear transformation, closedness of all the semidefinite complementary cones induced by L is ensured. We also introduce the notion of a principal subtransformation with respect to a face of the cone of positive semidefinite matrices and show that for a self-adjoint linear transformation, strict copositivity is equivalent to strict semimonotonicity of each principal subtransformation. Besides the above, various other solution properties of SDLCP will be interpreted and studied geometrically.  相似文献   

19.
This paper explores new connections between the satisfiability problem and semidefinite programming. We show how the process of resolution in satisfiability is equivalent to a linear transformation between the feasible sets of the relevant semidefinite programming problems. We call this transformation semidefinite programming resolution, and we demonstrate the potential of this novel concept by using it to obtain a direct proof of the exactness of the semidefinite formulation of satisfiability without applying Lasserre’s general theory for semidefinite relaxations of 0/1 problems. In particular, our proof explicitly shows how the exactness of the semidefinite formulation for any satisfiability formula can be interpreted as the implicit application of a finite sequence of resolution steps to verify whether the empty clause can be derived from the given formula.  相似文献   

20.
In this we paper we study techniques for generating valid convex constraints for mixed 0-1 conic programs. We show that many of the techniques developed for generating linear cuts for mixed 0-1 linear programs, such as the Gomory cuts, the lift-and-project cuts, and cuts from other hierarchies of tighter relaxations, extend in a straightforward manner to mixed 0-1 conic programs. We also show that simple extensions of these techniques lead to methods for generating convex quadratic cuts. Gomory cuts for mixed 0-1 conic programs have interesting implications for comparing the semidefinite programming and the linear programming relaxations of combinatorial optimization problems, e.g. we show that all the subtour elimination inequalities for the traveling salesman problem are rank-1 Gomory cuts with respect to a single semidefinite constraint. We also include results from our preliminary computational experiments with these cuts.Research partially supported by NSF grants CCR-00-09972, DMS-01-04282 and ONR grant N000140310514.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号