首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We performed high-resolution angle-resolved photoemission spectroscopy on La1.85Sr0.15CuO4 to study the nature of the single-particle excitation gap. We found that there is a well-defined superconducting coherence peak in the off-nodal region while it is strongly suppressed around the antinode. The momentum dependence of the single-particle excitation gap shows a striking deviation from the dx-y2--wave symmetry with anomalous enhancement around the antinode in both the superconducting and the pseudogap state. The observed close correlation between the superconducting coherence peak and the pseudogap suggests a substantial contribution of the pseudogap to the anomalous behavior of the gap in the superconducting state.  相似文献   

2.
The possibility of interpreting the normal pseudogap state of cuprates as a result of the formation of spin and charge structures is investigated for solutions of the Hubbard model of a finite 2D cluster based on the mean field method. The iterative self-consistency procedure reduces the initial uncorrelated spin distributions to stable structures. The Fourier components of the charge and spin distributions in such structures have peaks for characteristic incommensurate quasi-momenta depending on the doping. It is shown that for any doping, the density of states of the system has a sharp minimum (pseudogap) at the Fermi level. This emergence of the gap just at the Fermi level is a property typical of not only the superconducting state, but also the normal state of spin glasses. The characteristics of the Fermi surface averaged over the implemented structures and the properties of quasiparticles in the nodal and antinodal regions of the quasi-momentum are considered.  相似文献   

3.
Angle resolved photoemission spectroscopy (ARPES) has been playing a crucial role in understanding of physics behind high-temperature superconductivity. Our ARPES investigation of superconducting cuprates, performed over a decade and accomplished by very recent results, suggests a consistent view of electronic interactions in cuprates which provides natural explanation of both the origin of the pseudogap state and the mechanism for high-temperature superconductivity. Within this scenario, the spin-fluctuations play a decisive role in formation of the fermionic excitation spectrum in the normal state and are sufficient to explain the high transition temperatures to the superconducting state while the pseudogap phenomenon is a consequence of a Peierls-type intrinsic instability of electronic system to formation of an incommensurate density wave. In view of these results and their projection to numerous other materials, two general questions are arising: is the normal state in 2D metals ever stable and how does this intrinsic instability interplay with superconductivity?  相似文献   

4.
Using angle-resolved photoemission spectroscopy we demonstrate that a normal-state pseudogap exists above T(N-IC) in one of the most studied two-dimensional charge-density wave (CDW) dichalcogenides 2H-TaSe(2). The initial formation of the incommensurate CDW is confirmed as being driven by a conventional nesting instability, which is marked by a pseudogap. The magnitude, character, and anisotropy of the 2D-CDW pseudogap bear considerable resemblance to those seen in superconducting cuprates.  相似文献   

5.
We use angle-resolved photoemission spectroscopy to investigate the energy gap(s) in (Bi,Pb)2(Sr,La)2CuO6+delta. We find that the spectral gap has two components in the superconducting state: a superconducting gap and pseudogap. Differences in their momentum and temperature dependence suggest that they represent two separate energy scales. Spectra near the node reveal a sharp peak with a small gap below T(c) that closes at T(c). Near the antinode, spectra are broad with a large energy gap of approximately 40 meV above and below T(c). The latter spectral shape and gap magnitude are almost constant across T(c), indicating that the pseudogap state coexists with the superconducting state below T(c), and it dominates spectra around the antinode. We speculate that the pseudogap state competes with the superconductivity by diminishing spectral weight in antinodal regions, where the superconducting gap is largest.  相似文献   

6.
We review the search for a mediator of high-T c superconductivity focusing on ARPES experiment. In case of HTSC cuprates, we summarize and discuss a consistent view of electronic interactions that provides natural explanation of both the origin of the pseudogap state and the mechanism for high temperature superconductivity. Within this scenario, the spin-fluctuations play a decisive role in formation of the fermionic excitation spectrum in the normal state and are sufficient to explain the high transition temperatures to the superconducting state while the pseudogap phenomenon is a consequence of a Peierls-type intrinsic instability of electronic system to formation of an incommensurate density wave. On the other hand, a similar analysis being applied to the iron pnictides reveals especially strong electron-phonon coupling that suggests important role of phonons for high-T c superconductivity in pnictides.  相似文献   

7.
The influence of a uniform external magnetic field on the dynamical spin response of cuprate superconductors in the superconducting state is studied based on the kinetic energy driven superconducting mechanism. It is shown that the magnetic scattering around low and intermediate energies is dramatically changed with a modest external magnetic field. With increasing the external magnetic field, although the incommensurate magnetic scattering from both low and high energies is rather robust, the commensurate magnetic resonance scattering peak is broadened. The part of the spin excitation dispersion seems to be an hourglass-like dispersion, which breaks down at the heavily low energy regime. The theory also predicts that the commensurate resonance scattering at zero external magnetic field is induced into the incommensurate resonance scattering by applying an external magnetic field large enough.  相似文献   

8.
It is pointed out that the simulation computation of energy performed so far cannot be used to decide if the ground state of solid 4He has the number of lattice sites equal to the number of atoms (commensurate state) or if it is different (incommensurate state). The best variational wave function, a shadow wave function, gives an incommensurate state, but the equilibrium concentration of vacancies remains to be determined. We have computed the one-body density matrix in solid 4He for the incommensurate state by means of an exact ground state projector method in which incommensurability occurs spontaneously. We find a vacancy induced Bose-Einstein condensation of about 0.23 atoms per vacancy at a pressure of 54 bar. This means that bulk solid 4He is supersolid at low enough temperature if the exact ground state is incommensurate.  相似文献   

9.
We report neutron scattering studies on two single crystal samples of the electron-doped (n-type) superconducting (SC) cuprate Nd2-xCexCuO4 (x=0.15) with T(c)=18 and 25 K. Unlike the hole-doped (p-type) SC cuprates, where incommensurate magnetic fluctuations commonly exist, the n-type cuprate shows commensurate magnetic fluctuations at the tetragonal (1/2 1/2 0) reciprocal points both in the SC and in the normal state. A spin gap opens up when the n-type cuprate becomes SC, as in the optimally doped p-type La2-xSrxCuO4. The gap energy, however, increases gradually up to about 4 meV as T decreases from T(c) to 2 K, which contrasts with the spin pseudogap behavior with a T-independent gap energy in the SC state of p-type cuprates.  相似文献   

10.
The specific features of the superconducting state (with s and d pairing) are considered in terms of a pseudogap state caused by short-range order fluctuations of the “dielectric” type, namely, antiferromagnetic (spin density wave) or charge density wave fluctuations, in a model of the Fermi surface with “hot points.” A set of recurrent Gor’kov equations is derived with inclusion of all Feynman diagrams of a perturbation expansion in the interaction between an electron and short-range order fluctuations causing strong scattering near hot points. The influence of nonmagnetic impurities on superconductivity in such a pseudogap state is analyzed. The critical temperature for the superconducting transition is determined, and the effect of the effective pseudogap width, correlation length of short-range-order fluctuations, and impurity scattering frequency on the temperature dependence of the energy gap is investigated.  相似文献   

11.
Peculiarities of the superconducting state (s and d pairing) are considered in the model of the pseudogap state induced by short-range order fluctuations of the dielectric (AFM (SDW) or CDW) type, which is based on the model of the Fermi surface with “hot spots.” A microscopic derivation of the Ginzburg-Landau expansion is given with allowance for all Feynman diagrams in perturbation theory in the electron interaction with short-range order fluctuations responsible for strong scattering in the vicinity of hot spots. The superconducting transition temperature is determined as a function of the effective pseudogap width and the correlation length of short-range order fluctuations. Similar dependences are derived for the main parameters of a superconductor in the vicinity of the superconducting transition temperature. It is shown, in particular, that the specific heat jump at the transition point is considerably suppressed upon a transition to the pseudogap region on the phase diagram.  相似文献   

12.
A scenario is presented, in which the presence of a quantum critical point due to formation of incommensurate charge density waves accounts for the basic features of the high temperature superconducting cuprates, both in the normal and in the superconducting states. Specifically, the singular interaction arising close to this charge-driven quantum critical point gives rise to the non-Fermi liquid behavior universally found at optimal doping. This interaction is also responsible for d-wave Cooper pair formation with a superconducting critical temperature strongly dependent on doping in the overdoped region and with a plateau in the optimally doped region. In the underdoped region a temperature dependent pairing potential favors local pair formation without superconducting coherence, with a peculiar temperature dependence of the pseudogap and a non-trivial relation between the pairing temperature and the gap itself. This last property is in good qualitative agreement with so far unexplained features of the experiments.  相似文献   

13.
Tunneling spectroscopy using a very thin stack of intrinsic Josephson junctions has revealed that the superconducting gap is definitely different from the pseudogap in the Bi(2)Sr(2)CaCu(2)O(8+delta) system. In the underdoped region, the conductance peak arising from the superconducting gap is independently observed in the dI/dV-V curve and its position is much lower than that of the pseudogap. Near the optimum doping level and in the overdoped region, both peaks are located in close proximity. These findings are in conflict with a previous understanding of the pseudogap.  相似文献   

14.
A topological superconductor (TSC) is characterized by the topologically protected gapless surface state that is essentially an Andreev bound state consisting of Majorana fermions. While a TSC has not yet been discovered, the doped topological insulator Cu(x)Bi(2)Se(3), which superconducts below ~3 K, has been predicted to possess a topological superconducting state. We report that the point-contact spectra on the cleaved surface of superconducting Cu(x)Bi(2)Se(3) present a zero-bias conductance peak (ZBCP) which signifies unconventional superconductivity. Theoretical considerations of all possible superconducting states help us conclude that this ZBCP is due to Majorana fermions and gives evidence for a topological superconductivity in Cu(x)Bi(2)Se(3). In addition, we found an unusual pseudogap that develops below ~20 K and coexists with the topological superconducting state.  相似文献   

15.
Within the kinetic energy driven superconducting mechanism, the evolution of the magnetic excitations of the electron-doped cuprates in the superconducting state is studied. It is shown that there is a broad commensurate low energy magnetic scattering peak, while the magnetic resonance energy is located among this broad commensurate low energy scattering range. This broad commensurate low energy magnetic scattering disperses outward into a continuous ring-like incommensurate magnetic scattering at high energy.  相似文献   

16.
Thermodynamic quantities are derived for superconducting and pseudogap regimes by taking into account both amplitude and phase fluctuations of the pairing field. In the normal (pseudogap) state of the underdoped cuprates, two domains have to be distinguished: near the superconducting region, phase correlations are important up to temperature T(phi). Above T(phi), the pseudogap region is determined only by amplitudes, and phases are uncorrelated. Our calculations show excellent quantitative agreement with specific heat and magnetic susceptibility experiments on cuprates. We find that the mean field temperature T0 has a similar doping dependence as the pseudogap temperature T(*), whereas the pseudogap energy scale is given by the average amplitude above T(c).  相似文献   

17.
We study the electronic Raman scattering in the cuprates to distinguish the two possible scenarios of the pseudogap normal state. In one scenario, the pseudogap is assumed to be caused by phase fluctuations of the preformed Cooper pairs. We find that pair-breaking peaks appear in both the B1g and B2g Raman channels, and they axe smeared and tend to shift to the same energy with the increasing strength of phase fluctuations. Thus both channels reflect the same pairing energy scale, irrespectively of the doping level. In another scenario, the pseudogap is assumed to be caused by a hidden order that competes with the superconducting order. As an example, we assume that the hidden order is the d-density-wave (DDW) order. We find analytically and numerically that in the DDW normal state there is no Raman peak in the B2g channel in a tight-binding model up to the second nearest-neighbor hopping, while the Raman peak in the Big channel reflects the energy gap caused by the DDW order. This behavior is in agreement with experiments in the pseudogap normal state. To gain further insights, we also calculate the Raman spectra in the DDW+SC state. We study the doping and temperature dependence of the peak energy in both channels and find a two-gap behavior, which is in agreement with recent Raman experiments. Therefore, our results shed light on the hidden order scenario for the pseudogap.  相似文献   

18.
Calculations of the optical conductivity are performed in a simple model of the electronic spectrum of a two-dimensional system with “hot regions” on the Fermi surface. The model leads to a strong restructuring of the spectral density (pseudogap) in these regions. It is shown that this model makes it possible to reproduce qualitatively the basic features of the optical measurements in the pseudogap state of high-temperature superconducting cuprates. Pis’ma Zh. éksp. Teor. Fiz. 69, No. 6, 447–452 (25 March 1999)  相似文献   

19.
Interlayer tunneling resistivity is used to probe the low-energy density-of-states (DOS) depletion due to the pseudogap in the normal state of Bi2Sr2CaCu2O8+y. Measurements up to 60 T reveal that a field that restores DOS to its ungapped state shows strikingly different temperature and doping dependencies from the characteristic fields of the superconducting state. The pseudogap closing field and the pseudogap temperature T small star, filled evaluated independently are related through a simple Zeeman energy scaling. These findings indicate a predominant role of spins over the orbital effects in the formation of the pseudogap.  相似文献   

20.
High-resolution photoemission study of MgB2   总被引:1,自引:0,他引:1  
We have performed high-resolution photoemission spectroscopy on MgB2 and observed opening of a superconducting gap with a narrow coherent peak. We found that the superconducting gap is s like with the gap value ( Delta) of 4.5+/-0.3 meV at 15 K. The temperature dependence (15-40 K) of the gap value follows well the BCS form, suggesting that 2Delta/k(B)T(c) at T = 0 is about 3. No pseudogap behavior is observed in the normal state. The present results strongly suggest that MgB2 is categorized into a phonon-mediated BCS superconductor in the weak-coupling regime.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号