首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
江游  方向  穰瑜  田地 《分析化学》2008,36(5):715-718
共振激发控制技术是提高四极离子阱分辨率、灵敏度,实现其多级质谱分析的关键技术。针对质谱仪小型化趋势,提出基于现场可编程门阵列(filed-programmable gate array,FPGA)软件实现直接数字合成器(direct digital synthesizer,DDS)信号幅度调制的方法,开发出数字式共振激发控制技术,研制出结构更简单的共振激发控制系统。在对性能要求较高的电喷雾离子源-矩形离子阱质谱仪中,应用这套系统实现了单质荷比选择离子、三级质谱分析和600~2000 Thomson质荷比范围的全扫描等功能。相比使用模拟技术实现幅度调制的控制单元,数字式共振激发控制单元的功耗只有其10%,系统性能也满足四极离子阱的需求。  相似文献   

2.
Secular frequency scanning is implemented and characterized using both a benchtop linear ion trap and a miniature rectilinear ion trap mass spectrometer. Separation of tetraalkylammonium ions and those from a mass calibration mixture and from a pesticide mixture is demonstrated with peak widths approaching unit resolution for optimized conditions using the benchtop ion trap. The effects on the spectra of ion trap operating parameters, including waveform amplitude, scan direction, scan rate, and pressure are explored, and peaks at black holes corresponding to nonlinear (higher-order field) resonance points are investigated. Reverse frequency sweeps (increasing mass) on the Mini 12 are shown to result in significantly higher ion ejection efficiency and superior resolution than forward frequency sweeps that decrement mass. This result is accounted for by the asymmetry in ion energy absorption profiles as a function of AC frequency and the shift in ion secular frequency at higher amplitudes in the trap due to higher order fields. We also found that use of higher AC amplitudes in forward frequency sweeps biases ions toward ejection at points of higher order parametric resonance, despite using only dipolar excitation. Higher AC amplitudes also increase peak width and decrease sensitivity in both forward and reverse frequency sweeps. Higher sensitivity and resolution were obtained at higher trap pressures in the secular frequency scan, in contrast to conventional resonance ejection scans, which showed the opposite trend in resolution on the Mini 12. Mass range is shown to be naturally extended in secular frequency scanning when ejecting ions by sweeping the AC waveform through low frequencies, a method which is similar, but arguably superior, to the more usual method of mass range extension using low q resonance ejection.
Graphical Abstract ?
  相似文献   

3.
A method is reported for evaluating ion trap mass analyzers by selection of operating conditions under which both boundary and resonance ejection peaks occur in a single mass scan. The choice of frequency and amplitude of the auxiliary waveform applied for resonance ejection can be such as to produce a resonance ejection mass spectrum with unit resolution or, under selected conditions, signals attributable to both boundary and resonance ejection in a single mass scan. The contrasting mass resolution associated with these two ejection processes is evident in these data. The co-occurrence of the two ejection phenomena is ascribed to the effects of higher-order fields; it is more marked in some rectilinear ion traps (RITs) than in other nominally identical devices, leading to the possibility of using it to compare individual mass analyzers in multiplexed instruments. The method is used to compare multiple ion traps driven by the same RF signal in a fully-multiplexed mass spectrometer, composed of parallel ion source/mass analyzer/detector channels each housed in one quadrant of a specialized vacuum chamber.  相似文献   

4.
Initial results obtained using a new electrospray ionization (ESI) Fourier transform ion cyclotron resonance (FTICR) mass spectrometer operated at a magnetic field 11.5 tesla are presented. The new instrument utilized an electrostatic ion guide between the ESI source and FTICR trap that provided up to 5% overall transmission efficiency for light ions and up to 30% efficiency for heavier biomolecules. The higher magnetic field in combination with an enlarged FTICR ion trap made it possible to substantially improve resolving power and operate in a more robust fashion for large biopolymers compared to lower field instruments. Mass resolution up to 106 has been achieved for intermediate size biopolymers such as bovine ubiquitin (8.6 kDa) and bovine cytochrome c (12.4 kDa) without the use of frequency drift correction methods. A mass resolution of 370,000 has been demonstrated for isotopically resolved molecular ions of bovine serum albumin (66.5 kDa). Comparative measurements were made with the same spectrometer using a lower field 3.5-tesla magnet allowing the performance gains to be more readily quantified. Further improvements in pumping capacity of the vacuum system and efficiency of ion transmission from the source are expected to lead to further substantial sensitivity gains.  相似文献   

5.
Collision-activated dissociation spectra of dimethyl phosphonate and dimethyl phosphite ions were measured as a function of the amplitude of a supplementary AC voltage applied across the end-caps of an ion-trap mass spectrometer. These spectra yield breakdown graphs which bear a close resemblance to those obtained by varying collision energy in a triple-quadrupole mass spectrometer operating under multiple-collision conditions. Variation in the time of excitation at the resonance frequency provides an alternative route to breakdown graphs. The results demonstrate that energy deposition occurs via multiple activating collisions in the ion trap. Maximum energy deposition observed is somewhat smaller under normal operating conditions in the ion trap than in the triple-quadrupole mass spectrometer.  相似文献   

6.
A Fourier transform operating mode is applied to an ion trap. The trap is truncated at 2r(0) and presents unwanted defects that induce confinement electric-field non-linearities. Ion axial secular-motion spectrum is examined by experiments near the resonance line beta(z) = 0.5. Ion-loss processes and ion axial-motion peak splitting are observed. In the non-linear ion trap, the ion-motion frequency depends on its initial conditions in position and velocity. This brings an enlargement of the motion-frequency peak and limits the resolution. With a 2r(0) truncated ion trap, the Fourier transform ion trap mass spectrometer (FTIT-MS) leads experimentally to a mass resolution of about 4000 at 130 u.  相似文献   

7.
8.
A method for the confinement of ions at 760 Torr and room temperature is described. We have recently shown that a cylindrical-geometry high-field asymmetric waveform ion mobility spectrometer (FAIMS), which utilizes an ion separation technique based on the change in ion mobility at high electric fields, focuses ions in two dimensions. This article describes a FAIMS device in which the focusing is extended to three dimensions (i.e. ion trap). Characterization of the ion trap was carried out using a laboratory-constructed time-of-flight mass spectrometer. The half-life of a m/z 380 ion in the trap was determined to be 5 ms.  相似文献   

9.
Techniques are presented for mass-selective ion manipulation over a wide mass range in a three-dimensional quadrupole. The methods use an auxiliary, low-amplitude radio-frequency signal applied to the endcap electrodes. This signal is either held at a single frequency as the fundamental radio-frequency trapping amplitude is ramped or swept over a frequency range while the fundamental radio-frequency trapping amplitude is held at a fixed level. Ion isolation and ejection are demonstrated for ions formed within the ion trap using electron ionization and for ions injected into the ion trap formed either by an air-sustained glow discharge or by electrospray. Mass-selective ion ejection is used to reduce matrix-ion-induced space charge during ion injection, thereby producing signal enhancement for the detection of 2, 4, 6-trinitrotoluene in air. Mass-selective isolation of ions with mass-to-charge ratios above the normal operating range (m / z 650) for the ion trap is also demonstrated after injection of myoglobin ions formed via electrospray.  相似文献   

10.
With the recent trend towards mass spectrometer miniaturization, the fabrication of mass analyzers and other ion optical components is being performed at scales where critical dimensions range from several millimeters to several micrometers. Depending on the sizes of the objects and the nature of the fabrication method used, electrode surface roughness can become non‐negligible and affect the analytical performance of the mass analyzer. In this work, a method of characterizing surface roughness is introduced through the concept of spatial roughness frequency. The roughness of a given surface is quantitatively described using spatial roughness components at a series of frequencies and with characteristic intensities. Based on this concept, an analytical method has been developed to describe the electromagnetic field inside an electrode assembly including consideration for the electrode roughness. The methodology is applied in simplified form to cylindrical and rectilinear ion trap analyzers. Four types of surface finishes were applied to ion trap electrodes of various sizes to illustrate the surface roughness effects on the high‐order fields and to compare the analytical performance of the ion traps. Application of this method to arrays of large numbers of micro‐scale ion traps has enabled the impact of fabrication methodology to be evaluated in terms of mass resolution for the ion trap arrays. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

11.
An exploration of the parameters necessary to obtain high‐resolution excitation, using dipolar excitation, of an ion in a linear ion trap has been undertaken in this study. These parameters included ion trap pressure, excitation amplitude, excitation period, drive frequency of the ion trap, Mathieu q value and the mass of the ion of interest. An understanding of how these parameters play a role in high‐resolution excitation is necessary to the development of a method for the targeted tandem mass spectrometric (MS/MS) analysis of ions with the same nominal mass. Resonance excitation profiles with full width half maxima as narrow as 0.015 m/z units could be obtained, under the right conditions, for an ion from a homogenously substituted triazatriphosphorine at m/z 322.049, which translates into a mass resolution of >21 500. In this particular case the requirement for high resolution was a low trap pressure (3.8 × 10?5 Torr), low excitation amplitude (3 mV), long excitation period (100 ms) and a high Mathieu q value(0.8) when using a drive frequency of 1.228 MHz. Similar conditions were used to demonstrate the isolation of individual [M + H]+ component ions from mixtures of bromazepam (m/z 316.008)/chlorprothixene (m/z 316.0921)/fendiline (m/z 316.206) and chlorprothixene (m/z 316.0921)/oxycodone (m/z 316.1543)/fendiline (m/z 316.206) prior to obtaining product ion spectra with excitation at q = 0.236. In the former mixture the individual components were isolated with near 100% efficiency while in the latter mixture the isolation efficiency dropped to near 50% for the oxycodone component and to 80% for the other components. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

12.
Using n‐butylbenzene as a test molecule, evidence is provided that fast, efficient or highly energetic collision‐induced dissociation (CID) can be achieved during the mass acquisition ramp of a commercially available quadrupole ion trap (QIT) mass spectrometer. The method of excitation is very similar to axial modulation for mass range extension except that lower amplitude waveforms are used to excite the precursor ions within the trap instead of ejecting them from the trap. ITSIM simulations verify that fast kinetic excitation followed by kinetic‐to‐internal energy transfer occurs on the rapid time‐scale required for the recapture and mass analysis of product ions during the mass acquisition ramp. CID efficiencies larger than 50% can be obtained using this new approach and ratios of Th 91/92 of n‐butylbenzene fragment ions as large as 9 are possible, albeit at significantly reduced efficiencies. These very large ratios indicate an internal energy above 7 eV for the precursor ions indicating that fragmentation of larger ions could also be possible using this new approach. The main benefits of the new method are that no extra time is required for fragmentation or cooling and that on‐resonance conditions are guaranteed because the ions' secular frequencies are swept through the fixed frequency of excitation. Also presented are the effects of experimental variables such as excitation frequency, excitation amplitude and scan rate on the CID efficiencies and energetics. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

13.
A two-dimensional quadrupole ion trap mass spectrometer   总被引:8,自引:0,他引:8  
The use of a linear or two-dimensional (2-D) quadrupole ion trap as a high performance mass spectrometer is demonstrated. Mass analysis is performed by ejecting ions out a slot in one of the rods using the mass selective instability mode of operation. Resonance ejection and excitation are utilized to enhance mass analysis and to allow isolation and activation of ions for MS(n) capability. Improved trapping efficiency and increased ion capacity are observed relative to a three-dimensional (3-D) ion trap with similar mass range. Mass resolution comparable to 3-D traps is readily achieved, including high resolution at slower scan rates, although adequate mechanical tolerance of the trap structure is a requirement. Additional advantages of 2-D over 3-D ion traps are also discussed and demonstrated.  相似文献   

14.
印刷线路板分压离子阱的离子单向出射性能研究   总被引:3,自引:0,他引:3  
印刷线路板(Printed-Circuit-Board,PCB)分压离子阱是一种新型质量分析器,其突出优点在于内部电场可通过调节射频分压比进行优化.本实验在PCB分压离子阱离子出射方向的两组离散电极上配置了非对称的射频分压,以引入奇次阶场成分,使得射频电场的场中心(即离子运动中心)发生偏移,从而实现离子单向出射.通过数值计算软件SIMION和AXSIM分析了射频分压比差值与其内部电场分布的关系,并模拟离子运动轨迹,得到离子出射情况和模拟质谱峰.模拟结果表明,当两组离散电极的射频分压比差值为20%时,在合适的AC频率条件下,对于m/z=609 Th的离子,PCB分压离子阱的离子单向出射率可达90%以上,且质量分辨率大于2500.本研究可使PCB分压离子阱在基本不损失质量分辨率和使用单检测器模式下,大幅提高离子检测效率,因而在小型化质谱仪应用中具有显著优势.  相似文献   

15.
Designs of a quadrupole ion trap (QIT) as a source for time‐of‐flight (TOF) mass spectrometry are evaluated for mass resolution, ion trapping, and laser activation of trapped ions. Comparisons are made with the standard hyperbolic electrode ion trap geometry for TOF mass analysis in both linear and reflectron modes. A parallel‐plate design for the QIT is found to give significantly improved TOF mass spectrometer performance. Effects of ion temperature, trapped ion cloud size, mass, and extraction field on mass resolution are investigated in detail by simulation of the TOF peak profiles. Mass resolution (mm) values of several thousand are predicted even at room temperature with moderate extraction fields for the optimized design. The optimized design also allows larger radial ion collection size compared with the hyperbolic ion trap, without compromising the mass resolution. The proposed design of the QIT also improves the ion–laser interaction volume and photon collection efficiency for fluorescence measurements on trapped ions. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

16.
Proceeding from the pseudopotential-well approximation for ion motion in a quadrupole ion trap, mathematical expressions are derived to describe the excitation amplitude of an ion packet at a given mass-to-charge ratio. Ion-neutral collisions are incorporated to describe the damping of ion trajectories and to describe the distribution of individual ion trajectories about a mean amplitude for the ion packet. The rate of increase of the amplitude during scanning is related to expressions that describe the amplitude dispersion of the ions at the time of ejection from the trap, which is operating in a resonance ejection scanning mode to describe the temporal line width of the ejected ion packet. The temporal line width is related to mass resolution under a number of different scanning conditions. Included in the discussion are considerations of the effect on resolution of the resonance excitation voltage, temperature, pressure, noise, and buffer-gas composition. An expression for the maximum possible resolution at high ion mass-to-charge ratios is developed, and these results are compared to an existing theoretical construction. The expressions derived under the pseudopotential-well approximation are further extended to high q z values and compared to experimental data previously published by two other researchers.  相似文献   

17.
We report a new hybrid mass spectrometer, which is a combination of a quadrupole ion trap and an orthogonal time-of-flight (TOF) mass spectrometer. This new configuration consists of a collisional-damping chamber (CDC) inserted between an MSn-capable ion trap and a high-mass-accuracy orthogonal-TOF mass spectrometer. Because the CDC converted an ion packet into an energy-focused and quasi-continuous beam, a high mass resolution of over 10,000 and a high mass accuracy of better than 3 ppm were achieved. Moreover, the ratio of the maximum detectable m/z to the minimum detectable m/z, which is referred to here as the mass window, was improved to more than 10.  相似文献   

18.
从理论上讲, 离子阱质谱仪的性能是由阱内电场分布决定的,而电场分布又是由组成离子阱的电极几何结构和离子阱工作电压决定的. 对于矩形离子阱, 即使不考虑其几何结构的偏差, 其阱内的电场分布一般也很复杂. 在矩形离子阱内, 除四极电场外, 还包含多种成分的其他各种高阶场, 它们直接影响离子在阱内的运动轨迹和离子阱质谱的性能. 由于各种电场成分对离子阱内离子运动的影响非常复杂, 还很难从数学上给出精确的解析解, 使得目前从理论上还无法预测高阶场成分对质谱性能的影响. 本工作通过测定不同几何结构的矩形离子阱的稳定图, 从实验上比较了不同场半径, 即不同电场分布条件下的离子阱质谱性能的差别. 实验中, 通过改变离子阱的几何比例结构, 详细测定了不同结构的矩形离子阱的稳定图特征, 并与实验测得的质谱分析结果进行比较. 同时, 我们还详细介绍了矩形离子阱质谱的稳定图的测定方法, 并根据得到的不同情况下的稳定图结构分析了离子阱的质谱性能. 研究结果表明: 可以通过比较试验得到的稳定图结构来判断其离子阱质谱仪的性能如质量分辨能力等. 此外, 实验结果还发现: 对于y方向拉伸结构的矩形离子阱, 其实验绘制得到的是不完整的稳定图. 但根据稳定图边界的特点, 通过采用四极直流电压调制的方法, 可以对y方向拉伸结构的矩形离子阱的性能进行改善, 极大地提高了阱的质量分辨能力.  相似文献   

19.
In-trap fragmentation of ions in a hybrid linear ion trap triple quadrupole mass spectrometer occurs at pressures about 5e-5 torr. At these low pressures, efficient fragmentation of heavy ions (such as the singly charged homogenously substituted triazatriphosphorine of mass 2721.89 Da) can take a long time because of the relatively low collision frequency with the background gas and the high internal energy content required to produce fragmentation. Increasing the amplitude used for dipolar excitation leads to loss of the ion upon the quadrupole rods. In the work presented here, the addition of a dc octopolar field to a linear ion trap is described. The dc octopolar field was created by the addition of four auxiliary electrodes situated between the quadrupole rods at a distance of 10 mm from the axis. The inclusion of the dc octopolar field was shown to cause the ions’ frequency of motion to shift out of phase with the excitation signal at high radial amplitudes. This resulted in beat-like trajectories with periods of excitation and de-excitation as the ions’ frequency of motion shifted in and out of phase with the excitation signal. This led to a reduction in the loss of ions on the quadrupole rods during the excitation process. The result is an increased fragmentation efficiency relative to the fragmentation efficiency obtained when using an LIT constructed of round rods only. The inclusion of the dc octopolar field allowed the ion to be fragmented more efficiently in a relatively short excitation period.  相似文献   

20.
In this article, the Poincare-Lighthill-Kuo (PLK) method is used to derive an analytical expression on the stability boundary and the ion trajectory. A multipole superposition model mainly including octopole component is adopted to represent the inhomogeneities of the field. In this method, both the motional displacement and secular frequency of ions have been expanded to asymptotic series by the scale of nonlinear term ε, which represents a weak octopole field. By solving the zero and first-order approximate equations, it is found that a frequency shift exists between the ideal and nonlinear conditions. The motional frequency of ions in nonlinear ion trap depends on not only Mathieu parameters, a and q, but also the percentage of the nonlinear field and the initial amplitude of ions. In the same trap, ions have the same mass-to-charge ratio (m/z) but they have different initial amplitudes or velocities. Consequently, they will be ejected at different time through after a mass-selective instability scan. The influences on the mass resolution in quadrupole ion trap, which is coupled with positive or negative octopole fields, have been discussed respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号