首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
The perceptual tone/noise ratio was measured for merged iterated ripple noise stimuli (IRNs) in which one of the individual IRNs always had a delay of 16 ms. The second IRN was chosen to create merged IRNs with single octave delay ratios (e.g., 16 ms:8 ms), double octave delay ratios (e.g., 16 ms:4 ms), harmonic delay ratios (e.g., 16 ms:12 ms), and nonharmonic delay ratios (e.g., 16 ms:3.9 ms). All stimuli were high-pass filtered at 800 Hz. The tone/noise ratio was significantly enhanced for the octave ratios, and there was a strong interaction between the single and double octave delay ratios and number of iterations. But, the perceptual tone/noise ratio for nonoctave ratios was determined solely by the number of iterations. The pattern of the results can be explained in terms of the height of the largest peak in the summary autocorrelogram [Meddis and Hewitt, J. Acoust. Soc. Am. 89, 2866-2882 (1991)] provided the model is modified to improve the simulation of the loss of phase locking.  相似文献   

2.
This study describes the masking asymmetry between noise and iterated rippled noise (IRN) as a function of spectral region and the IRN delay. Masking asymmetry refers to the fact that noise masks IRN much more effectively than IRN masks noise, even when the stimuli occupy the same spectral region. Detection thresholds for IRN masked by noise and for noise masked by IRN were measured with an adaptive two-alternative, forced choice (2AFC) procedure with signal level as the adaptive parameter. Masker level was randomly varied within a 10-dB range in order to reduce the salience of loudness as a cue for detection. The stimuli were filtered into frequency bands, 2.2-kHz wide, with lower cutoff frequencies ranging from 0.8 to 6.4 kHz. IRN was generated with 16 iterations and with varying delays. The reciprocal of the delay was 16, 32, 64, or 128 Hz. When the reciprocal of the IRN delay was within the pitch range, i.e., above 30 Hz, there was a substantial masking asymmetry between IRN and noise for all filter cutoff frequencies; threshold for IRN masked by noise was about 10 dB larger than threshold for noise masked by IRN. For the 16-Hz IRN, the masking asymmetry decreased progressively with increasing filter cutoff frequency, from about 9 dB for the lowest cutoff frequency to less than 1 dB for the highest cutoff frequency. This suggests that masking asymmetry may be determined by different cues for delays within and below the pitch range. The fact that masking asymmetry exists for conditions that combine very long IRN delays with very high filter cutoff frequencies means that it is unlikely that models based on the excitation patterns of the stimuli would be successful in explaining the threshold data. A range of time-domain models of auditory processing that focus on the time intervals in phase-locked neural activity patterns is reviewed. Most of these models were successful in accounting for the basic masking asymmetry between IRN and noise for conditions within the pitch range, and one of the models produced an exceptionally good fit to the data.  相似文献   

3.
The pitch strength of rippled noise and iterated rippled noise has recently been fitted by an exponential function of the height of the first peak in the normalized autocorrelation function [Yost, J. Acoust. Soc. Am. 100, 3329-3335 (1996)]. The current study compares the pitch strengths and autocorrelation functions of rippled noise (RN) and another regular-interval noise, "AABB." RN is generated by delaying a copy of a noise sample and adding it to the undelayed version. AABB with the same pitch is generated by taking a sample of noise (A) with the same duration as the RN delay and repeating it to produce AA, and then concatenating many of these once-repeated sequences to produce AABBCCDD.... The height of the first peak (h1) in the normalized autocorrelation function of AABB is 0.5, identical to that of RN. The current experiments show the following: (1) AABB and RN can be discriminated when the pitch is less than about 250 Hz. (2) For these low pitches, the pitch strength of AABB is greater than that for RN whereas it is about the same for pitches above 250 Hz. (3) When RN is replaced by iterated rippled noise (IRN) adjusted to match the pitch strength of AABB, the two are no longer discriminable. The pitch-strength difference between AABB and RN below 250 Hz is explained in terms of a three-stage, running-autocorrelation model. It is suggested that temporal integration of pitch information is achieved in two stages separated by a nonlinearity. The first integration stage is implemented as running autocorrelation with a time constant of 1.5 ms. The second model stage is a nonlinear transformation. In the third model stage, the output of the nonlinear transformation is long-term averaged (second integration stage) to provide a measure of pitch strength. The model provides an excellent fit to the pitch-strength matching data over a wide range of pitches.  相似文献   

4.
This experiment examined the partial masking of periodic complex tones by a background of noise, and vice versa. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz, and components were added in either cosine phase (CPH) or random phase (RPH). The tones and the noise were bandpass filtered into the same frequency region, from the tenth harmonic up to 5 kHz. The target alone was alternated with the target and the background; for the mixture, the background and target were either gated together, or the background was turned on 400 ms before, and off 200 ms after, the target. Subjects had to adjust the level of either the target alone or the target in the background so as to match the loudness of the target in the two intervals. The overall level of the background was 50 dB SPL, and loudness matches were obtained for several fixed levels of the target alone or in the background. The resulting loudness-matching functions showed clear asymmetry of partial masking. For a given target-to-background ratio, the partial loudness of a complex tone in a noise background was lower than the partial loudness of a noise in a complex tone background. Expressed as the target-to-background ratio required to achieve a given loudness, the asymmetry typically amounted to 12-16 dB. When the F0 of the complex tone was 62.5 Hz, the asymmetry of partial masking was greater for CPH than for RPH. When the F0 was 250 Hz, the asymmetry was greater for RPH than for CPH. Masked thresholds showed the same pattern as for partial masking for both F0's. Onset asynchrony had some effect on the loudness matching data when the target was just above its masked threshold, but did not significantly affect the level at which the target in the background reached its unmasked loudness. The results are interpreted in terms of the temporal structure of the stimuli.  相似文献   

5.
The detectability of a 10-ms tone masked by a 400-ms wideband noise was measured as a function of the delay in the onset of the tone compared to the onset of the noise burst. Unlike most studies like this on auditory overshoot, special attention was given to signal delays between 0 and 45 ms. Nine well-practiced subjects were tested using an adaptive psychophysical procedure in which the level of the masking noise was adjusted to estimate 79% correct detections. Tones of both 3.0 and 4.0 kHz, at different levels, were used as signals. For the subjects showing overshoot, detectability remained approximately constant for at least 20-30 ms of signal delay, and then detectability began to improve gradually toward its maximum at about 150-200 ms. That is, there was a "hesitation" prior to detectability beginning to improve, and the duration of this hesitation was similar to that seen in physiological measurements of the medial olivocochlear (MOC) system. This result provides further support for the hypothesis that the MOC efferent system makes a major contribution to overshoot in simultaneous masking.  相似文献   

6.
Iterated rippled noise (IRN) is generated by a cascade of delay and add (the gain after the delay is 1.0) or delay and subtract (the gain is -1.0) operations. The delay and add/subtract operations impart a spectral ripple and a temporal regularity to the noise. The waveform fine structure is different in these two conditions, but the envelope can be extremely similar. Four experiments were used to determine conditions in which the processing of IRN stimuli might be mediated by the waveform fine structure or by the envelope. In experiments 1 and 3 listeners discriminated among three stimuli in a single-interval task: IRN stimuli generated with the delay and add operations (g = 1.0), IRN stimuli generated using the delay and subtract operations (g = -1.0), and a flat-spectrum noise stimulus. In experiment 2 the listeners were presented two IRN stimuli that differed in delay (4 vs 6 ms) and a flat-spectrum noise stimulus that was not an IRN stimulus. In experiments 1 and 2 both the envelope and waveform fine structure contained the spectral ripple and temporal regularity. In experiment 3 only the envelope had this spectral and temporal structure. In all experiments discrimination was determined as a function of high-pass filtering the stimuli, and listeners could discriminate between the two IRN stimuli up to frequency regions as high as 4000-6000 Hz. Listeners could discriminate the IRN stimuli from the flat-spectrum noise stimulus at even higher frequencies (as high as 8000 Hz), but these discriminations did not appear to depend on the pitch of the IRN stimuli. A control experiment (fourth experiment) suggests that IRN discriminations in high-frequency regions are probably not due entirely to low-frequency nonlinear distortion products. The results of the paper imply that pitch processing of IRN stimuli is based on the waveform fine structure.  相似文献   

7.
This paper describes the temporal responses of anteroventral cochlear nucleus (AVCN) units in the chinchilla to rippled noises. Rippled noise is generated when a wideband noise is delayed and added (cos+ noise) or subtracted (cos- noise) to the undelayed noise. Renewal densities were constructed to evaluate synchronous discharges at the delay. In response to rippled noise, AVCN units which show phase locking to best frequency (BF) tones gave renewal densities having major peaks at the delay for cos+ noise, but nulls at the delay for cos- noise. Most AVCN units which did not show BF phase locking gave renewal densities that did not contain features related to the rippled noise delay; a few of these nonphase-locked units did show peaks in renewal densities for both cos+ and cos- noises. Synchrony at the rippled noise delay was also demonstrated with evoked potential recording. Autocorrelation functions of the neurophonic potential showed peaks at the rippled noise delay for both cos+ and cos- noises. In addition, peaks could be observed in the autocorrelation functions of neurophonic potentials for rippled noises with delays as short as 1 ms; peaks were never observed in renewal densities of single units for ripple delays as short as 1 ms. The results show that a temporal representation of rippled noise delay does exist in the AVCN and are consistent with current hypotheses regarding functions of AVCN subsystems. The temporal representation of the delay is a presumptive neural code for the pitches of rippled noises.  相似文献   

8.
The steady-state sound field of a sine tone does not provide useful localization information in a room. Nevertheless, listeners can localize a sine tone in a room if it has an onset transient which allows the precedence effect to operate. In the present study, we made a quantitative assessment of onsets and the precedence effect by systematically varying onset duration from 0 s (impulsive), where the precedence effect is maximal, to 5 s, where there is no precedence effect at all. We also assessed listeners' sensitivity to the steady-state sound field under impulsive conditions by varying the total duration of tone pulses. Our experiments were conducted in a room with a single acoustical reflection having various directions and delays, and in an anechoic room. The results for tones of various frequencies (500 and 2000 Hz) and sound-pressure levels (65 and 40 dBA) indicate the following: Localization in rooms is facilitated by onsets even if the onsets are as long as 100 ms. The facilitation depends upon the peak intensity of the tone, as well as the onset duration, suggesting that onset rate is critical for the precedence effect; our results are most consistent with rate expressed as an increase in sound pressure per unit time. The facilitation also depends upon the reflection delay time for a room; gradual onsets take on much more importance for the precedence effect in rooms with long delays. As onsets begin to lose their effectiveness listeners become increasingly "misdirected" by invalid cues in the steady-state sound field. The pattern of misdirection suggests a perceptual averaging of cues over an interval more than an order of magnitude longer than previous estimates of the summation window for the precedence effect. The pattern of misdirection varies with the frequency of a tone, due to frequency-dependent interference effects in a room, but it is independent of signal level. Localization of an impulsive sine tone in rooms is very insensitive to the pulse duration; this suggests that binaural inhibition models of the precedence effect must be supplemented by an evaluative component that we term the "plausibility hypothesis."  相似文献   

9.
Recently, it was demonstrated that the pitch strength of a stimulus denoted "AABB" differed from rippled noise (RN) despite the fact that their long-term spectra and autocorrelation functions are identical (Wiegrebe et al., 1998). Rippled noise is generated by adding a delayed copy of Gaussian noise back to itself; AABB is generated by concatenating equal-duration, Gaussian-noise segments where every segment is repeated once. It was shown that a simple model based on a two-stage integration process separated by a nonlinear transformation explains the pitch-strength differences quantitatively. Here, we investigate how the spectral listening region influences pitch-strength differences between RN and AABB. Bandpass filtering the two stimuli with a constant bandwidth of 1 kHz revealed a systematic effect of center frequency. For relatively high pitches (corresponding to delays, d, of 4 or 5.6 ms, pitch strength differences between AABB and RN were absent when the pass band was between 0 and 1 kHz. When the pass band was between 3.5 and 4.5 kHz, pitch-strength differences were substantial. For lower pitches (d equal to or longer than 8 ms), AABB had a substantially greater pitch strength independent of the filter center frequency. The model presented in Wiegrebe et al. (1998) cannot capture these effects of center frequency. Here, it is demonstrated that it is possible to simulate the RN-AABB pitch-strength differences, and the effect of listening region, with a computer model of the auditory periphery. It is shown that, in an auditory model, pitch-strength differences are introduced by the nonlinear transformation possibly associated with half-wave rectification or mechanoelectrical transduction. In this experimental context, however, the nonlinearity has perceptual relevance only when the differences in short-term fluctuations of AABB and RN are preserved in auditory-filter outputs. The current experiments relate the purely functional model introduced in the preceding paper to basic properties of the peripheral auditory system. The implication for neural time constants of pitch processing is discussed.  相似文献   

10.

Background

We examined development of auditory temporal integration and inhibition by assessing electrophysiological responses to tone pairs separated by interstimulus intervals (ISIs) of 25, 50, 100, 200, 400, and 800 ms in 28 children aged 7 to 9 years, and 15 adults.

Results

In adults a distinct neural response was elicited to tones presented at ISIs of 25 ms or longer, whereas in children this was only seen in response to tones presented at ISIs above 100 ms. In adults, late N1 amplitude was larger for the second tone of the tone pair when separated by ISIs as short as 100 ms, consistent with the perceptual integration of successive stimuli within the temporal window of integration. In contrast, children showed enhanced negativity only when tone pairs were separated by ISIs of 200 ms. In children, the amplitude of the P1 component was attenuated at ISIs below 200 ms, consistent with a refractory process.

Conclusions

These results indicate that adults integrate sequential auditory information into smaller temporal segments than children. These results suggest that there are marked maturational changes from childhood to adulthood in the perceptual processes underpinning the grouping of incoming auditory sensory information, and that electrophysiological measures provide a sensitive, non-invasive method allowing further examination of these changes.  相似文献   

11.
When a low harmonic in a harmonic complex tone is mistuned from its harmonic value by a sufficient amount it is heard as a separate tone, standing out from the complex as a whole. This experiment estimated the degree of mistuning required for this phenomenon to occur, for complex tones with 10 or 12 equal-amplitude components (60 dB SPL per component). On each trial the subject was presented with a complex tone which either had all its partials at harmonic frequencies or had one partial mistuned from its harmonic frequency. The subject had to indicate whether he heard a single complex tone with one pitch or a complex tone plus a pure tone which did not "belong" to the complex. An adaptive procedure was used to track the degree of mistuning required to achieve a d' value of 1. Threshold was determined for each ot the first six harmonics of each complex tone. In one set of conditions stimulus duration was held constant at 410 ms, and the fundamental frequency was either 100, 200, or 400 Hz. For most conditions the thresholds fell between 1% and 3% of the harmonic frequency, depending on the subject. However, thresholds tended to be greater for the first two harmonics of the 100-Hz fundamental and, for some subjects, thresholds increased for the fifth and sixth harmonics. In a second set of conditions fundamental frequency was held constant at 200 Hz, and the duration was either 50, 110, 410, or 1610 ms. Thresholds increased by a factor of 3-5 as duration was decreased from 1610 ms to 50 ms. The results are discussed in terms of a hypothetical harmonic sieve and mechanisms for the formation of perceptual streams.  相似文献   

12.
Three experiments investigated how the onset asynchrony and ear of presentation of a single mistuned frequency component influence its contribution to the pitch of an otherwise harmonic complex tone. Subjects matched the pitch of the target complex by adjusting the pitch of a second similar but strictly periodic complex tone. When the mistuned component (the 4th harmonic of a 155 Hz fundamental) started 160 ms or more before the remaining harmonics but stopped simultaneously with them, it made a reduced contribution to the pitch of the complex. It made no contribution if it started more than 300 ms before. Pitch shifts and their reduction with onset time were larger for short (90 ms) sounds than for long (410 ms). Pitch shifts were slightly larger when the mistuned component was presented to the same ear as the remaining 11 in-tune harmonics than to the opposite ear. Adding a "captor" complex tone with a fundamental of 200 Hz and a missing 3rd harmonic to the contralateral ear did not augment the effect of onset time, even though the captor was synchronous with the mistuned harmonic, the mistuned component was equal in frequency to the missing 3rd harmonic of the captor complex tone and it was played to the same ear as the captor. The results show that a difference in onset time can prevent a resolved frequency component from contributing to the pitch of a complex tone even though it is present throughout that complex tone.  相似文献   

13.
The experiment compared the pitches of complex tones consisting of unresolved harmonics. The fundamental frequency (F0) of the tones was 250 Hz and the harmonics were bandpass filtered between 5500 and 7500 Hz. Two 20-ms complex-tone bursts were presented, separated by a brief gap. The gap was an integer number of periods of the waveform: 0, 4, or 8 ms. The envelope phase of the second tone burst was shifted, such that the interpulse interval (IPI) across the gap was reduced or increased by 0.25 or 0.75 periods (1 or 3 ms). A "no shift" control was also included, where the IPI was held at an integer number of periods. Pitch matches were obtained by varying the F0 of a comparison tone with the same temporal parameters as the standard but without the shift. Relative to the no-shift control, the variations in IPI produced substantial pitch shifts when there was no gap between the bursts, but little effect was seen for gaps of 4 or 8 ms. However, for some conditions with the same IPI in the shifted interval, an increase in the IPI of the comparison interval from 4 to 8 ms (gap increased from 0 to 4 ms) changed the pitch match. The presence of a pitch shift suggests that the pitch mechanism is integrating information across the two tone bursts. It is argued that the results are consistent with a pitch mechanism employing a long integration time for continuous stimuli that is reset in response to temporal discontinuities. For a 250-Hz F0, an 8-ms IPI may be sufficient for resetting. Pitch models based on a spectral analysis of the simulated neural spike train, on an autocorrelation of the spike train, and on the mean rate of pitch pulses, all failed to account for the observed pitch matches.  相似文献   

14.
To find the possible reasons for the midlevel elevation of the Weber fraction in intensity discrimination of a tone burst, a comparison was performed for the complementary distributions of spike activity of an ensemble of space nerves, such as the distribution of time instants when spikes occur, the distribution of interspike intervals, and the autocorrelation function. The distribution properties were detected in a poststimulus histogram, an interspike interval histogram, and an autocorrelation histogram—all obtained from the reaction of an ensemble of model space nerves in response to an auditory noise burst–useful tone burst complex. Two configurations were used: in the first, the peak amplitude of the tone burst was varied and the noise amplitude was fixed; in the other, the tone burst amplitude was fixed and the noise amplitude was varied. Noise could precede or follow the tone burst. The noise and tone burst durations, as well as the interval between them, was 4 kHz and corresponded to the characteristic frequencies of the model space nerves. The profiles of all the mentioned histograms had two maxima. The values and the positions of the maxima in the poststimulus histogram corresponded to the amplitudes and mutual time position of the noise and the tone burst. The maximum that occurred in response to the tone burst action could be a basis for the formation of the loudness of the latter (explicit loudness). However, the positions of the maxima in the other two histograms did not depend on the positions of tone bursts and noise in the combinations. The first maximum fell in short intervals and united intervals corresponding to the noise and tone burst durations. The second maximum fell in intervals corresponding to a tone burst delay with respect to noise, and its value was proportional to the noise amplitude or tone burst amplitude that was smaller in the complex. An increase in tone burst or noise amplitudes was caused by nonlinear variations in the two maxima and the ratio between them. The size of the first maximum in the of interspike interval distribution could be the basis for the formation of the loudness of the masked tone burst (implicit loudness), and the size of the second maximum, for the formation of intensity in the periodicity pitch of the complex. The auditory effect of the midlevel enhancement of tone burst loudness could be the result of variations in the implicit tone burst loudness caused by variations in tone-burst or noise intensity. The reason for the enhancement of the Weber fraction could be competitive interaction between such subjective qualities as explicit and implicit tone-burst loudness and the intensity of the periodicity pitch of the complex.  相似文献   

15.
Two versions of the "10 dB down-5 dB up" rule were computerized: (1) with a "lax" time-window response validation in which a subject had to press and release a button within the window of 15-3750 ms after onset of a 1-s tone in his earphone (this was designed to stimulate the condition often found in manual audiometry) and (2) with a "strict" condition in which he had to respond within 60-795 ms after onset of the tone and release the button within 15-750 ms following the tone. A threshold-seeking run was continued using 5-dB steps until the threshold had been crossed six times. With 24 subjects it was found that 13 of 288 runs did not yield the "ASHA" criterion (three ascending series ending on the same hearing level (HL), out of any six or fewer consecutive series), but of these 13 runs all but one run did meet the "ANSI" criterion (two ascending series ending on the same HL, out of any three or fewer consecutive series). The ANSI Hearinnd yielded essentially the same means. An ANSI HTL was established within four or fewer ascending series for 95% or more of the runs, while an average of five extra stimuli was needed to pursue the run until an ASHA HTL was achieved (a savings of nearly 5 min per person). It was recommended that the ANSI Criterion for HTL be adopted for many audiometric situations, that a maximum of four ascending series be completed in any single threshold-seeking run, and that rather strict time windows be set within which onset and offset responses may register.  相似文献   

16.
Listeners have a remarkable ability to localize and identify sound sources in reverberant environments. The term "precedence effect" (PE; also known as the "Haas effect," "law of the first wavefront," and "echo suppression") refers to a group of auditory phenomena that is thought to be related to this ability. Traditionally, three measures have been used to quantify the PE: (1) Fusion: at short delays (1-5 ms for clicks) the lead and lag perceptually fuse into one auditory event; (2) Localization dominance: the perceived location of the leading source dominates that of the lagging source; and (3) Discrimination suppression: at short delays, changes in the location or interaural parameters of the lag are difficult to discriminate compared with changes in characteristics of the lead. Little is known about the relation among these aspects of the PE, since they are rarely studied in the same listeners. In the present study, extensive measurements of these phenomena were made for six normal-hearing listeners using 1-ms noise bursts. The results suggest that, for clicks, fusion lasts 1-5 ms; by 5 ms most listeners hear two sounds on a majority of trials. However, localization dominance and discrimination suppression remain potent for delays of 10 ms or longer. Results are consistent with a simple model in which information from the lead and lag interacts perceptually and in which the strength of this interaction decreases with spatiotemporal separation of the lead and lag. At short delays, lead and lag both contribute to spatial perception, but the lead dominates (to the extent that only one position is ever heard). At the longest delays tested, two distinct sounds are perceived (as measured in a fusion task), but they are not always heard at independent spatial locations (as measured in a localization dominance task). These results suggest that directional cues from the lag are not necessarily salient for all conditions in which the lag is subjectively heard as a separate event.  相似文献   

17.
Temporal models of pitch and harmonic segregation call for delays of up to 30 ms to cover the full range of existence of musical pitch. To date there is little anatomical or physiological evidence for delays that long. We propose a mechanism by which delays may be synthesized from cross-channel phase interaction. Phases of adjacent cochlear filter channels are shifted by an amount proportional to frequency and then combined as a weighted sum to approximate a delay. Synthetic delays may be used by pitch perception models such as autocorrelation, segregation models such as harmonic cancellation, and binaural processing models to explain sensitivity to large interaural delays. The maximum duration of synthetic delays is limited by the duration of the impulse responses of cochlear filters, itself inversely proportional to cochlear filter bandwidth. Maximum delay is thus frequency dependent. This may explain the fact, puzzling for temporal pitch models such as autocorrelation, that pitch is more salient and easy to discriminate for complex tones that contain resolved partials.  相似文献   

18.
Thresholds for the detection of harmonic complex tones in noise were measured as a function of masker level. The rms level of the masker ranged from 40 to 70 dB SPL in 10-dB steps. The tones had a fundamental frequency (F0) of 62.5 or 250 Hz, and components were added in either cosine or random phase. The complex tones and the noise were bandpass filtered into the same frequency region, from the tenth harmonic up to 5 kHz. In a different condition, the roles of masker and signal were reversed, keeping all other parameters the same; subjects had to detect the noise in the presence of a harmonic tone masker. In both conditions, the masker was either gated synchronously with the 700-ms signal, or it started 400 ms before and stopped 200 ms after the signal. The results showed a large asymmetry in the effectiveness of masking between the tones and noise. Even though signal and masker had the same bandwidth, the noise was a more effective masker than the complex tone. The degree of asymmetry depended on F0, component phase, and the level of the masker. The maximum difference between masked thresholds for tone and noise was about 28 dB; this occurred when the F0 was 62.5 Hz, the components were in cosine phase, and the masker level was 70 dB SPL. In most conditions, the growth-of-masking functions had slopes close to 1 (on a dB versus dB scale). However, for the cosine-phase tone masker with an F0 of 62.5 Hz, a 10-dB increase in masker level led to an increase in masked threshold of the noise of only 3.7 dB, on average. We suggest that the results for this condition are strongly affected by the active mechanism in the cochlea.  相似文献   

19.
Reductions in overshoot following intense sound exposures   总被引:1,自引:0,他引:1  
Overshoot refers to the poorer detectability of brief signals presented soon after the onset of a masking noise compared to those presented after longer delays. In the present experiment, brief tonal signals were presented 2 or 190 ms following the onset of a broadband masker that was 200 ms in duration. These two conditions of signal delay were tested before and after a series of exposures to a tone intense enough to induce temporary threshold shift (TTS). The magnitude of the overshoot was reduced after the exposure when a TTS of at least 10 dB was induced, but not when smaller amounts of TTS were induced. The reduction in overshoot was due to a decrease in the masked thresholds with the 2-ms delay; masked thresholds with the 190-ms delay were not different pre- and post-exposure. The implication is that the mechanisms responsible for the normal overshoot effect are temporarily inactivated by the same stimulus manipulations that produce a mild exposure-induced hearing loss. Thus the result is the paradox that exposure to intense sounds can produce a loss of signal detectability in certain stimulus conditions and a simultaneous improvement in detectability in other stimulus conditions.  相似文献   

20.
Three experiments measured the perceived continuity of two pure tones "flankers" through a masker containing a silence. Experiment 1 used a 2I-2AFC procedure; one interval contained two noise bursts separated by a silent gap, and the other contained two noise bursts separated by a tone of the same duration as the silence. Discrimination between masker conditions was very accurate when the flankers were absent but was impaired substantially when the flankers were present. This was taken as evidence that illusory flanker continuity during the silent gap was heard as similar to the physical presence of a tone in the gap. In experiment 2, performance remained poor when the flankers were frequency glides aligned along a common trajectory. Performance improved significantly when the flankers were misaligned in trajectory. In experiment 3, listeners rated directly perceived flanker continuity. Strong continuity was reported in the silent gap conditions for which poor performance had been observed in experiments 1 and 2. These findings show that continuity may be heard through a masker that cannot mask a physically continuous tone but can mask the flankers' offset and onset. The results are explained in terms of the perceptual grouping of onsets and offsets of the flankers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号