首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
师彦龙  高忆慈  史启祯  BASOLO  F. 《化学学报》1989,47(2):105-111
本文研究了PPh3存在与不存在的情况下, M(CO)6(M=Cr, Mo, W)与三甲胺氧化物me3NO在CH2Cl2中的氧原子转移反应动力学. 反应速率遵循: r=k[M(CO)6][Me3NO], 并且rW>rMo>rCr, 并根据实验结果提出了反应机理, 讨论了溶剂对反应速率的影响.  相似文献   

2.
Density functional calculations have been used to investigate oxygen atom transfer reactions from the biological oxygen atom donors trimethylamine N-oxide (Me(3)NO) and dimethyl sulfoxide (DMSO) to the molybdenum(IV) complexes [MoO(mnt)(2)](2-) and [Mo(OCH(3))(mnt)(2)](-) (mnt = maleonitrile-1,2-dithiolate), which may serve as models for mononuclear molybdenum enzymes of the DMSO reductase family. The reaction between [MoO(mnt)(2)](2-) and trimethylamine N-oxide was found to have an activation energy of 72 kJ/mol and proceed via a transition state (TS) with distorted octahedral geometry, where the Me(3)NO is bound through the oxygen to the molybdenum atom and the N-O bond is considerably weakened. The computational modeling of the reactions between dimethyl sulfoxide (DMSO) and [MoO(mnt)(2)](2-) or [Mo(OCH(3))(mnt)(2)](-) indicated that the former is energetically unfavorable while the latter was found to be favorable. The addition of a methyl group to [MoO(mnt)(2)](2-) to form the corresponding des-oxo complex not only lowers the relative energy of the products but also lowers the activation energy. In addition, the reaction with [Mo(OCH(3))(mnt)(2)](-) proceeds via a TS with trigonal prismatic geometry instead of the distorted octahedral TS geometry modeled for the reaction between [MoO(mnt)(2)](2-) and Me(3)NO.  相似文献   

3.
Treatment of [Cp*Mo(NO)Cl(mu-Cl)](2) with magnesium (Me(2)Mg.dioxane, MeMgCl) or aluminum (Me(3)Al) methylating reagents affords the known compound [Cp*Mo(NO)Me(mu-Cl)](2) (1). Similar treatment of the dichloro precursor with MeLi in ethereal solvents generates an equimolar mixture of 1 and the trimethyl "ate" complex, Cp*MoMe(3)(NO-Li(OEt(2)(n)), (2-Et(2)O). Reaction of 2-Et(2)O with a source of [Me](+) forms Cp*MoMe(3)(=N-OMe)(3), a rare terminal alkoxylimido complex. Metathesis of the chloro ligands of [Cp*Mo(NO)Cl(mu-Cl)](2) by MeLi in toluene at low temperatures produces the target dimethyl complex, Cp*Mo(NO)Me(2) (4), in 75% isolated yield. In solution, 4 is predominantly a monomeric species, whereas in the solid state it adopts a dimeric or oligomeric structure containing isonitrosyl bridges as indicated by IR and (15)N/(13)C NMR spectroscopies. Hydrolysis of 4 affords meso- and rac-[Cp*Mo(NO)Me](2)(mu-O) (5), and the reactions of 4 with a range of Lewis bases, L, to form the 18e adducts Cp*Mo(NO)(L)Me(2) (e.g., Cp*Mo(NO)(PMe(3))Me(2) (7)), have established it to be the most electrophilic complex of its family. Acidolysis of the methyl groups of 4 is also facile. Most notably, 4 is thermally unstable in solution and undergoes isomerization via nitrosyl N-O bond cleavage to its oxo(imido) form, Cp*Mo(NMe)(O)Me (11), which is isolable from the final reaction mixture as the mu-oxo-bridged adduct formed by 4 and 11, i.e., Cp*Mo(NO)Me(2)(mu-O)Cp*Mo(NMe)Me (4 <-- 11). The rate of this isomerization is significantly faster for the tungsten dimethyl complex; hence, Cp*W(NO)Me(2) (12) is not isolable free of a supporting donor interaction and can only be isolated as Cp*W(NO)Me(2)(mu-O)Cp*W(NMe)Me (12 <-- 13) or Cp*W(NO)Me(2)(PMe(3)) (14) adducts.  相似文献   

4.
A new electron precise, six-electron, sulfide-bicapped trinuclear cluster complex [Et4N]4[Mo(IV)3(mu3-S)2(mnt)6] (1) has been synthesized, where each Mo(IV) atom is seven coordinated. Identical reaction conditions yielded a dimeric complex, [PNP]2[W(V)2(mu2-S)2(mnt)4] (2) from the starting W(IV) analogue due to oxidation by sulfur formed by the auto-oxidation of H2S. Two stepwise reversible reductions and no oxidation of 2 as observed by cyclic voltammetry are correlated with the nonbonding nature of the lowest unoccupied molecular orbital and deeply buried highest occupied molecular orbital by theoretical calculations at the density-functional theory level.  相似文献   

5.
The reactions of half-sandwich diselenolate Mo and W complexes Cp#M(NO)(SePh)2 (M = Mo; Cp# = Cp (1a), MeCp (1b); M = W; Cp# = Cp (1c)) with (Norb)Mo(CO)4, Ni(COD)2 and Fe(CO)5 have been investigated. Treatment of (1a), (1b) and (1c) with (Norb)Mo(CO)4 in PhMe gave the bimetallic complexes: CpMo(NO)(-SePh)2Mo(CO)4 (2a), MeCpMo(NO)(-SePh)2Mo(CO)4 (2b) and CpW(NO)(-SePh)2Mo(CO)4 (2c) in moderate yields. Irradiation of (1a) and (1c) in the presence of Fe(CO)5 gave heterobimetallic complexes CpMo(CO)(-SePh)2Fe(CO)3 (3a) and CpW(NO)(-SePh)2Fe(CO)3 (3c). Ni(COD)2 reacts with two equivalents of (1a), (1b) and (1c) to give [CpMo(NO)(-SePh)2]2Ni (4a), [MeCpMo(NO)(-SePh)2]2Ni (4b) and [CpW(NO)(-SePh)2]2Ni (4c) in good yields. The new heterobimetallic complexes were characterized by i.r., 1H-n.m.r., 13C-n.m.r. and EI-MS spectroscopy.  相似文献   

6.
You YS  Yoon JH  Lim JH  Kim HC  Hong CS 《Inorganic chemistry》2005,44(20):7063-7069
Self-assembly of a new precursor [Cu(L)](ClO4)2 (1) (L = macrocyclic ligand) with octacyanometalates [M(CN)8]3- (M = Mo, W) produced two-dimensional cyano-bridged Cu(II)-M(V) bimetallic assemblies [Cu(L)]3n[M(CN)8]2n.6nH2O [M = Mo (2), W (3)] with novel honeycomblike structures, characterized by spectroscopic data, single-crystal X-ray diffraction studies, and magnetic measurements. The crystallographic determination reveals that compounds 2 and 3 are isostructural and crystallize in the triclinic system (P). The Cu atom in a distorted octahedral environment experiences a tetragonal elongation of apical nitrogen atoms exhibiting average Cu-Nax lengths of 2.566 Angstroms for 2 and 2.593 Angstroms for 3, which accounts for the Jahn-Teller effect of a Cu(II) ion. The Cu-NC angles are magnetically important, ranging from 135.7 to 159.2 degrees. Three types of L in the crystal lattice are observed, which are dependent on the relative positions of the pendant hydroxyl groups with respect to the CuN4 basal plane. The positions are correlated with hydrogen bonding of OH groups to neighboring atoms. The magnetic data indicate that ferromagnetic and antiferromagnetic interactions between Cu(II) and M(V) through the CN linkage coexist.  相似文献   

7.
8.
Layered metal disulfides-MS(2) (M = Mo, W) in the form of fullerene-like nanoparticles and in the form of platelets (crystallites of the 2H polytype) have been intercalated by exposure to alkali metal (potassium and sodium) vapor using a two-zone transport method. The composition of the intercalated systems was established using X-ray energy dispersive spectrometer and X-ray photoelectron spectroscopy (XPS). The alkali metal concentration in the host lattice was found to depend on the kind of sample and the experimental conditions. Furthermore, an inhomogeneity of the intercalated samples was observed. The product consisted of both nonintercalated and intercalated phases. X-ray diffraction analysis and transmission electron microscopy of the samples, which were not exposed to the ambient atmosphere, showed that they suffered little change in their lattice parameters. On the other hand, after exposure to ambient atmosphere, substantial increase in the interplanar spacing (3-5 A) was observed for the intercalated phases. Insertion of one to two water molecules per intercalated metal atom was suggested as a possible explanation for this large expansion along the c-axis. Deintercalation of the hydrated alkali atoms and restacking of the MS(2) layers was observed in all the samples after prolonged exposure to the atmosphere. Electric field induced deintercalation of the alkali metal atoms from the host lattice was also observed by means of the XPS technique. Magnetic moment measurements for all the samples indicate a diamagnetic to paramagnetic transition after intercalation. Measurements of the transport properties reveal a semiconductor to metal transition for the heavily K intercalated 2H-MoS(2). Other samples show several orders of magnitude decrease in resistivity and two- to five-fold decrease in activation energies upon intercalation. These modifications are believed to occur via charge transfer from the alkali metal to the conduction band of the host lattice. Recovery of the pristine compound properties (diamagnetism and semiconductivity) was observed as a result of deintercalation.  相似文献   

9.
Although the kinetics and mechanism of metal-mediated oxygen atom (oxo) transfer reactions have been examined in some detail, sulfur atom (sulfido) transfer reactions have not been similarly scrutinized. The reactions [M(IV)(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-) + Ph(3)AsQ --> [M(VI)Q(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-) + Ph(3)As (M = Mo, W; Q = O, S) with variable substituent X' have been investigated in acetonitrile in order to determine the relative rates of oxo versus sulfido transfer at constant structure (square pyramidal) of the atom acceptor and of atom transfer at constant structure of the atom donor and metal variability of the atom acceptor. All reactions exhibit second-order kinetics and entropies of activation (-25 to -45 eu) consistent with an associative transition state. At parity of atom acceptor, k(2)(S) (0.25-0.75 M(-1)s(-1)) > k(2)(O) (0.023-0.060 M(-1)s(-1)) with M = Mo and k(2)(S) (4.1-66.7 M(-1)s(-1)) > k(2)(O) (1.8-9.8 M(-1)s(-1)) with M = W. At constant atom donor and X', k(2)(W) > k(2)(Mo) with reactivity ratios k(2)(W)/k(2)(Mo) = 78-184 (Q = O) and 16-89 (Q = S). Rate constants refer to 298 K. At constant M and Q, rates increase in the order X' = Me less, similar OMe < H < Br < COMe < CN; increasing electron-withdrawing propensity accelerates reaction rates. The probable transition state involves significant Ph(3)AsQ...M bond-making (X' rate trend) and concomitant As-Q bond weakening (bond energy order As-O > As-S). Orders of oxo and sulfido donor ability of substrates and complexes are deduced on the basis of qualitative reactivity properties determined here and elsewhere. This work complements previous studies of the reaction systems [M(IV)(O-p-C(6)H(4)X')(S(2)C(2)Me(2))(2)](1-)/XO where the substrates are N-oxides and S-oxides and k(2)(W) > k(2)(Mo) at constant substrate also applies. The reaction order of substrates is Me(3)NO > (CH(2))(4)SO > Ph(3)AsS > Ph(3)AsO. This research provides the first quantitative information of metal-mediated sulfido transfer.  相似文献   

10.
11.
The stoichiometry and the kinetics of oxidation of the cyanide complexes M(CN)n4- (M = Fe(II), Ru(II), Os(II), Mo(IV), and W(IV)) by the peroxydisulfate ion, S2O8(2-), and by the much more strongly oxidizing fluoroxysulfate ion, SO4F-, were studied in aqueous solutions containing Li+. Reactions of S2O8(2-) with M(CN)n4- are known to be strongly catalyzed by Li+ and other alkali metal ions, and this applies also to the corresponding reactions of SO4F-. The primary reactions of S2O8(2-) and SO4F- have both been found to be one-electron processes in which the equally strong O-O and O-F bonds are broken. The primary reaction of S2O8(2-) consists of a single step yielding M(CN)n3-, SO4-, and SO42-, whereas the primary reaction of SO4F- comprises two parallel one-electron steps, one leading to M(CN)n3-, SO4-, and F- and the other yielding M(CN)n-1(2-), CN-, SO4- and F-. The relationship between the rate constants and the standard free energies of reaction for the Li+-catalyzed reactions of SO4F- and S2O8(2-) with M(CN)n(4-), and for the uncatalyzed reactions of S2O8(2-) with bipyridyl and phenanthroline complexes MLn2+ (M = Fe(II), Ru(II), and Os(II)) studied previously, suggests that the intrinsic barrier for all three sets of reactions is similar, i.e., unaffected by the Li+ catalysis, and that the electron transfer and the breakage of the O-O and O-F bonds are concerted processes.  相似文献   

12.
The redox behaviour of a series of heterometallic phosphaferrocenes (hereafter refered to as I, II and III) has been studied in propylene carbonate containing 0.1 M (C2H5)4N+ ClO4? both mercury and platinum electrodes.Complex I (DPF) undergoes a reversible one-electron reduction. Complexes II and III exhibit the same reversible reduction step and one (species II) or two (species III) additional irreversible reduction step(s) generating [M(CO)5]? anions (M = Cr, Mo, W).Oxidation of the complexes II and III indicates that fragment I is involved in the first, easiest, oxidation step, whereas further step(s) involve the M(CO)5 moieties. The redox characteristics of the complexes I, II, III, clearly indicate the absence of cooperation between metallic centers in II and III and the very effective barrier provided by the central iron in moiety I towards mutual effects of both phospholyl rings.  相似文献   

13.
Andrieu  J.  Belkova  N. V.  Besora  M.  Collange  E.  Epstein  L. M.  Lledós  A.  Poli  R.  Revin  P. O.  Shubina  E. S.  Vorontsov  E. V. 《Russian Chemical Bulletin》2003,52(12):2679-2682
The protonation of complexes Cp*M(dppe)H3 (dppe is ethylenebis(diphenylphosphine), M = Mo (1), W (2)) by a variety of fluorinated alcohols of different acid strength (FCH2CH2OH, CF3CH2OH, (CF3)2CHOH, and (CF3)3COH) was investigated experimentally by the variable temperature spectroscopic methods (IR, NMR) and stopped-flow technique (UV-Vis). The structures of the hydrogen-bonded and proton transfer products were studied by DFT calculations. In agreement with the calculation results, the IR data suggest that the initial hydrogen bond is established with a hydride site for complex 1 and with the metal site for complex 2. However, no intermediate dihydrogen complex found theoretically was detected experimentally on the way to the final classical tetrahydride product.  相似文献   

14.
Two new isostructural mixed metal selenites, PbMSeO(6) (M = Mo(6+) or W(6+)), that are only composed of second-order Jahn-Teller (SOJT) distortive cations have been synthesized by standard solid-state reaction techniques using PbO, SeO(2), and MoO(3) (or WO(3)) as reagents. The structures of the reported materials were determined by single-crystal and powder X-ray diffraction. The materials show a three-dimensional framework structure consisting of chains of corner-shared MO(6) octahedra connected by SeO(3) and PbO(8) polyhedra. All of the constituent cations (M(6+), Se(4+), and Pb(2+)) are in distorted environments attributable to second-order Jahn-Teller (SOJT) effects. While the Mo(6+) cations undergo a C(2)-type intraoctahedral distortion toward an edge, the Se(4+) and Pb(2+) cations are in asymmetric coordination environments attributable to their lone pairs. The SeO(3) polyhedra strongly influence the direction of the Mo(6+) intraoctahedral distortion. Infrared spectroscopy, thermogravimetric analysis, the magnitudes of out-of-center distortions, and dipole moment calculations are also presented. Crystal data: PbMoSeO(6), triclinic, space group P-1 (No. 2), with a = 6.8944(6) ?, b = 7.2219(6) ?, c = 10.8294(9) ?, α = 99.751(2)°, β = 99.996(2)°, γ = 90.041(2)°, V = 523.09(8) ?(3), and Z = 2; PbWSeO(6), triclinic, space group P-1 (No. 2), with a = 6.8689(2) ?, b = 7.2398(2) ?, c = 10.9037(3) ?, α = 99.699(4)°, β = 100.348(3)°, γ = 90.139(4)°, V = 525.50(3) ?(3), and Z = 2.  相似文献   

15.
Chelate Complexes of the Type M(CO)4(Me2XGeMe2CH2X′Me2) (M) = Cr, Mo, W; X, X′ = N, P, As; Me = CH3) The ligands (Me2)XGeMe2CH2X′Me2 (M) = Cr, Mo, W) react with M(CO)4norbor (norbor = Norbornadiene) (M = Cr, Mo, W) yielding the chelate complexes M(CO)4(Me)2XGeMe2CH2X′Me2). compounds of low thermal stability are formed with the ligands (Me2NGeMe2CH2X′Me2 because of the weak donor ability of the GeNMe2 group and with Me2AsGeMe2CH2NMe2 caused by strong steric ring tension. The new compounds are characterized by analytical and spectroscopic (n.m.r., i.r., m.s.) investigations.  相似文献   

16.
New proton and electron donors, M(II)(HL)(2) (M = Ni, Pd, Pt; L = 5,6-diethylpyradzinedithiolate), as well as a proton and electron acceptor, Pt(IV)(L)(2), were prepared and characterized. The pH-dependent cyclic voltammetry of the M(II)(HL)(2) complexes revealed a favorable Gibbs free energy (K(com) > 1) for the proton and electron transfer reactions from M(II)(HL)(2) to M(IV)(L)(2); i.e., the equilibrium for the following reaction lies to the right: M(II)(HL)(2) + M(IV)(L)(2) <==>2M(III)(HL)(L).  相似文献   

17.
Abstract

Metallation of organodichlorophosphanes RPC12 (R=Me, Ph, tBu, C5Me5) with Na[M(CO)3Cp] (M=Mo, W) in benzene yields the thermolabile Metallo(alkyl)chlorophosphanes la-g. In solution la-d show a high tendency to decompose to the corresponding metal chloride Cp(CO)3M-Cl with phosphinidene elimination. The rate of decomposition depends on the metal and the phosphorus ligand (Mo > W, Me > Ph > tBu C5Me5)  相似文献   

18.
Paramagnetic, chalcogenido-M(v) dithiolene complexes, [Tp*ME{S2C2(CO2Me)2}][M=Mo, E=O, S; M=W, E=O, S; Tp*=hydrotris(3,5-dimethylpyrazol-1-yl)borate] are generated in the reactions of dimethyl acetylenedicarboxylate (DMAC) and the sulfur-rich complexes NEt4[Tp*MoS(S4)] and NEt4[Tp*WS3]; the oxo complexes result from hydrolysis of the initial sulfido products. As well, a novel 'organoscorpionate' complex, [W{S2C2(CO2Me)2}{SC2(CO2Me)2-Tp*}], has been isolated from the reactions of NEt4[Tp*WS3] with excess DMAC. Complexes , and have been isolated and characterised by microanalytical, mass spectrometric, spectroscopic and (for and) X-ray crystallographic techniques. Complexes and have been partially characterised by mass spectrometry and IR and EPR spectroscopy. Six-coordinate, distorted-octahedral contains a terminal sulfido ligand (W=S=2.108(3)A), a bidentate dithiolene ligand (S-Cav=1.758 A, C=C=1.332(10)A) and a fac-tridentate Tp* ligand. Seven-coordinate contains a planar, bidentate dithiolene ligand (S-Cav=1.746 A, C=C=1.359(5)A) and a novel pentadentate 'organoscorpionate' ligand formed by the melding of DMAC, sulfido and trispyrazolylborate units. The latter is coordinated through two pyrazolyl N atoms (kappa2-N,N') and a tridentate kappa3-S,C,C' unit appended to N-beta of the third (uncoordinated) pyrazolyl group. The second-generation [Tp*ME(dithiolene)] complexes represent a refinement on first-generation [Tp*ME(arene-1,2-dithiolate)] complexes and their synthesis affords an opportunity to compare and contrast the electronic structures of true vs. pseudo-dithiolene ligands in otherwise analogous complexes.  相似文献   

19.
The title compounds trans-M(2)(O(2)CMe)(2)[C((i)PrN)(2)C≡C-Ph](2), I (M = Mo) and II (M = W), show electronic absorptions in the visible region of the spectrum assignable to (1)MLCT [M(2)δ to phenylethynylamidinate π*]. These compounds show dual emission from S(1) and T(1) states. For both I and II, S(1) is (1)MLCT, but for I the T(1) state is shown to be MMδδ* while for II T(1) is (3)MLCT. The lifetimes of the S(1) and T(1) states have been determined by femtosecond and nanosecond transient absorption spectroscopy: for I S(1) ~ 20 ps and T(1) ~ 100 μs and for II S(1) ~ 6 ps and T(1) ~ 5 μs. From solvent dependence of the absorption and emission spectra, we suggest that the S(1) states are localized on one amidinate ligand though the initial absorption is to a delocalized state.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号