首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The synthesis and magnetic properties of 13 new homo- and heterometallic Co(II) complexes containing the artificial amino acid 2-amino-isobutyric acid, aibH, are reported: [Co(II)(4)(aib)(3)(aibH)(3)(NO(3))](NO(3))(4)·2.8CH(3)OH·0.2H(2)O (1·2.8CH(3)OH·0.2H(2)O), {Na(2)[Co(II)(2)(aib)(2)(N(3))(4)(CH(3)OH)(4)]}(n) (2), [Co(II)(6)La(III)(aib)(6)(OH)(3)(NO(3))(2)(H(2)O)(4)(CH(3)CN)(2)]·0.5[La(NO(3))(6)]·0.75(ClO(4))·1.75(NO(3))·3.2CH(3)CN·5.9H(2)O (3·3.2CH(3)CN·5.9H(2)O), [Co(II)(6)Pr(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Pr(NO(3))(5)]·0.41[Pr(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.59[Co(NO(3))(3)(H(2)O)]·0.2(ClO(4))·0.25H(2)O (4·0.25H(2)O), [Co(II)(6)Nd(III)(aib)(6)(OH)(3)(NO(3))(2.8)(CH(3)OH)(4.7)(H(2)O)(1.5)]·2.7(ClO(4))·0.5(NO(3))·2.26CH(3)OH·0.24H(2)O (5·2.26CH(3)OH·0.24H(2)O), [Co(II)(6)Sm(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Sm(NO(3))(5)]·0.44[Sm(NO(3))(3)(ClO(4))(0.5)(H(2)O)(1.5)]·0.56[Co(NO(3))(3)(H(2)O)]·0.22(ClO(4))·0.3H(2)O (6·0.3H(2)O), [Co(II)(6)Eu(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)OH)(4.87)(H(2)O)(1.13)](ClO(4))(2.5)(NO(3))(0.5)·2.43CH(3)OH·0.92H(2)O (7·2.43CH(3)OH·0.92H(2)O), [Co(II)(6)Gd(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.9)(H(2)O)(1.2)]·2.6(ClO(4))·0.5(NO(3))·2.58CH(3)OH·0.47H(2)O (8·2.58CH(3)OH·0.47H(2)O), [Co(II)(6)Tb(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·[Tb(NO(3))(5)]·0.034[Tb(NO(3))(3)(ClO(4))(0.5)(H(2)O)(0.5)]·0.656[Co(NO(3))(3)(H(2)O)]·0.343(ClO(4))·0.3H(2)O (9·0.3H(2)O), [Co(II)(6)Dy(III)(aib)(6)(OH)(3)(NO(3))(2.9)(CH(3)OH)(4.92)(H(2)O)(1.18)](ClO(4))(2.6)(NO(3))(0.5)·2.5CH(3)OH·0.5H(2)O (10·2.5CH(3)OH·0.5H(2)O), [Co(II)(6)Ho(III)(aib)(6)(OH)(3)(NO(3))(3)(CH(3)CN)(6)]·0.27[Ho(NO(3))(3)(ClO(4))(0.35)(H(2)O)(0.15)]·0.656[Co(NO(3))(3)(H(2)O)]·0.171(ClO(4)) (11), [Co(II)(6)Er(III)(aib)(6)(OH)(4)(NO(3))(2)(CH(3)CN)(2.5)(H(2)O)(3.5)](ClO(4))(3)·CH(3)CN·0.75H(2)O (12·CH(3)CN·0.75H(2)O), and [Co(II)(6)Tm(III)(aib)(6)(OH)(3)(NO(3))(3)(H(2)O)(6)]·1.48(ClO(4))·1.52(NO(3))·3H(2)O (13·3H(2)O). Complex 1 describes a distorted tetrahedral metallic cluster, while complex 2 can be considered to be a 2-D coordination polymer. Complexes 3-13 can all be regarded as metallo-cryptand encapsulated lanthanides in which the central lanthanide ion is captivated within a [Co(II)(6)] trigonal prism. dc and ac magnetic susceptibility studies have been carried out in the 2-300 K range for complexes 1, 3, 5, 7, 8, 10, 12, and 13, revealing the possibility of single molecule magnetism behavior for complex 10.  相似文献   

2.
Reactions are reported of sulfur-bridged incomplete cubane-type tungsten clusters having W(3)(micro(3)-S)(micro-S)(3) cores with acetylene and its derivative dimethylacetylenedicarboxylate (DMAD). The reaction of the isothiocyanate tungsten cluster [W(3)(micro(3)-S)(micro-S)(3)(NCS)(9)](5)(-) (5) with acetylene in 0.1 M HCl afforded a novel complex having two acetylene molecules in different adduct formation modes, [W(3)(micro(3)-S)(micro(3)-SCH=CHS)(micro-SCH=CH(2))(NCS)(9)](4)(-) (6), and the presence of two kinds of intermediates [W(3)(micro(3)-S)(micro-S)(micro(3)-SCH=CHS)(NCS)(9)](5)(-) (7) and [W(3)(micro(3)-S)(micro-S)(2)(micro-SCH=CH(2))(NCS)(9)](4)(-) (8) was observed. The reaction of the diethyldithiophosphate (dtp) tungsten cluster [W(3)(micro(3)-S)(micro-S)(3)(micro-OAc)(dtp)(3)(CH(3)CN)] (10) with DMAD in acetonitrile containing acetic acid resulted in the formation of another complex having two DMAD molecules of different adduct formation modes, [W(3)(micro(3)-S)(micro-SC(CO(2))=CH(CO(2)CH(3)))(micro(3)-SC(CO(2)CH(3))=C(CO(2)CH(3))S)(micro-OAc)(dtp)(3)] (11), where hydrolysis of one of the four ester groups of the two DMAD groups occurred and the resultant carboxylic group coordinated to tungsten. The conformation of the micro-SCH=CH(2) moiety in 6 is different from that of the corresponding moiety in [W(3)(micro(3)-S)(micro-O)(micro-S)(micro-SCH=CH(2))(NCS)(9)](4)(-) (4). Introduction of the second acetylene molecule to the intermediate [W(3)(micro(3)-S)(micro-S)(2)(micro-SCH=CH(2))(NCS)(9)](4)(-) (8) resulted in the formation of 6. The clusters were characterized by UV-vis spectroscopy, (1)H NMR spectroscopy, and X-ray crystallography (for (Hpy)(4).6.1.33py.0.5H(2)O and 11.CH(3)CN), and the formation of 6 and 11 was examined in detail from a mechanistic point of view.  相似文献   

3.
The geometries, energies and vibrational frequencies of various polyborates in both gaseous and aqueous phase were calculated at the B3LYP/aug-cc-pVDZ level. The calculated total symmetrical stretching Raman shifts of B(OH)(3), B(OH)(4)(-), B(2)O(OH)(4), B(2)O(OH)(5)(-), B(2)O(OH)(6)(2-), B(3)O(3)(OH)(3), B(3)O(3)(OH)(4)(-), B(3)O(3)(OH)(5)(2-), B(3)O(3)(OH)(6)(3-), B(4)O(5)(OH)(4)(2-) and B(5)O(6)(OH)(4)(-) were assigned to 877.40, 735.33, 785.22, 792.90, 696.79, 587.72, 599.06, 740.16, 705.01, 551.67 and 521.04cm(-1), respectively. The results can be used as the characteristic frequency for polyborates in aqueous phase at room temperature. At least six types of polyborates B(OH)(3), B(OH)(4)(-), B(3)O(3)(OH)(4)(-), B(3)O(3)(OH)(5)(2-), B(4)O(5)(OH)(4)(2-) and B(5)O(6)(OH)(4)(-), occur in aqueous solutions at ambient temperature. The chemical species distribution and the relevant interaction mechanisms among polyborates in the solutions were also suggested.  相似文献   

4.
The hydrothermal reactions of trivacant Keggin A-alpha-XW(9)O(34) polyoxoanions (X=P(V)/Si(IV)) with transition-metal ions (Ni(II)/Cu(II)/Fe(II)) in the presence of amines result in eight novel high-nuclear transition-metal-substituted polyoxotungstates [{Ni(7)(mu(3)-OH)(3)O(2)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))][{Ni(6)(mu(3)-OH)(3)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))][Ni(dap)(2)(H(2)O)(2)]4.5 H(2)O (1), [Cu(dap)(H(2)O)(3)](2)[{Cu(8)(dap)(4)(H(2)O)(2)}(B-alpha-SiW(9)O(34))(2)]6 H(2)O (2), (enH(2))(3)H(15)[{Fe(II) (1.5)Fe(III) (12)(mu(3)-OH)(12)(mu(4)-PO(4))(4)}(B-alpha-PW(9)O(34))(4)]ca.130 H(2)O (3), [{Cu(6)(mu(3)-OH)(3)(en)(3) (H(2)O)(3)}(B-alpha-PW(9)O(34))]7 H(2)O (4), [{Ni(6)(mu(3)-OH)(3)(en)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))]7 H(2)O (5), [{Ni(6)(mu(3)-OH)(3)(en)(2)(H(2)O)(8)}(B-alpha-PW(9)O(34))]7 H(2)O (6), [{Ni(6)(mu(3)-OH)(3)(dap)(2)(H(2)O)(8)}(B-alpha-PW(9)O(34))] 7 H(2)O (7), and [{Ni(6)(mu(3)-OH)(3)(en)(3)(H(2)O)(6)}(B-alpha-SiW(9)O(34))][Ni(0.5)(en)] 3.5 H(2)O (8) (en=ethylenediamine, dap=1,2-diaminopropane). These compounds have been structurally characterized by elemental analyses, IR spectra, diffuse reflectance spectra, thermogravimatric analysis, and X-ray crystallography. The double-cluster complex of phosphotungstate 1 simultaneously contains hepta- and hexa-Ni(II)-substituted trivacant Keggin units [{Ni(7)(mu(3)-OH)(3)O(2)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))](2-) and [{Ni(6)(mu(3)-OH)(3)(dap)(3)(H(2)O)(6)}(B-alpha-PW(9)O(34))]. The dimeric silicotungstate 2 is built up from two trivacant Keggin [B-alpha-SiW(9)O(34)](10-) fragments linked by an octa-Cu(II) cluster. The main skeleton of 3 is a tetrameric cluster constructed from four tri-Fe(III)-substituted [Fe(III) (3)(mu(3)-OH)(3)(B-alpha-PW(9) O(34))](3-) Keggin units linked by a central Fe(II) (4)O(4) cubane core and four mu(4)-PO(4) bridges. Complex 4 is an unprecedented three-dimensional extended architecture with hexagonal channels built by hexa-Cu(II) clusters and trivacant Keggin [B-alpha-PW(9)O(34)](9-) fragments. The common feature of 5-8 is that they contain a B-alpha-isomeric trivacant Keggin fragment capped by a hexa-Ni(II) cluster, very similar to the hexa-Ni(II)-substituted trivacant Keggin unit in 1. Magnetic measurements illustrate that 1, 2, and 5 have ferromagnetic couplings within the magnetic metal centers, whereas 3 and 4 reveal the antiferromagnetic exchange interactions within the magnetic metal centers. Moreover, the magnetic behavior of 4 and 5 have been theoretically simulated by the MAGPACK magnetic program package.  相似文献   

5.
The reaction of Ni(3)(dppm)(3)(micro(3)-I)(2)) with sodium trichlorostannate affords the first tin-capped nickel cluster Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl(3) (1). A site of coordinative unsaturation at tin can be introduced by the reaction of 1 with Tl[PF(6)] yielding the stannylene-capped cluster [Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl(2)](+) (2). Clusters 1 and 2 were characterized by 31P NMR, X-ray diffraction, and cyclic voltammetry (CV). Clusters 1 and 2 exhibit single electron redox chemistries, [Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl3](0/*-), [Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl(2)](+/0), that together comprise a redox equilibrium. Thus, electrochemical reduction of 1 produces first the 49e- cluster radical anion [Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl(3)](*-) which then yields the reduced form of 2, [Ni(3)(dppm)(3)(micro(3)-I)(micro(3)-SnCl(2)], upon chloride dissociation.  相似文献   

6.
In analogy to the [M(II)(bpy)(3)](2+) cations, where M(II) is a divalent transition-metal and bpy is 2,2'-bipyridine, the tris-chelated [M(III)(bpy)(3)](3+) cations, where M(III) is Cr(III) or Co(III), induce the crystallization of chiral, anionic three-dimensional (3D) coordination polymers of oxalate-bridged (&mgr;-ox) metal complexes with stoichiometries [M(II)(2)(ox)(3)](n)()(2)(n)()(-) or [M(I)M(III)(ox)(3)](n)()(2)(n)()(-). The tripositive charge is partially compensated by inclusion of additional complex anions like ClO(4)(-), BF(4)(-), or PF(6)(-) which are encapsulated in cubic shaped cavities formed by the bipyridine ligands of the cations. Thus, an elaborate structure of cationic and anionic species within a polymeric anionic network is realized. The compounds isolated and structurally characterized include [Cr(III)(bpy)(3)][ClO(4)] [NaCr(III)(ox)(3)] (1), [Cr(III)(bpy)(3)][ClO(4)][Mn(II)(2)(ox)(3)] (2), [Cr(III)(bpy)(3)][BF(4)] [Mn(II)(2)(ox)(3)] (3), [Co(III)(bpy)(3)][PF(6)][NaCr(III)(ox)(3)] (4). Crystal data: 1, cubic, P2(1)3, a = 15.523(4) ?, Z = 4; 2, cubic, P4(1)32, a = 15.564(3) ?, Z = 4; 3, cubic, P4(1)32, a = 15.553(3) ?, Z = 4; 4, cubic, P2(1)3, a = 15.515(3) ?, Z = 4. Furthermore, it seemed likely that 1,2-dithiooxalate (dto) could act as an alternative to the oxalate bridging ligand, and as a result the compound [Ni(II)(phen)(3)][NaCo(III)(dto)(3)].C(3)H(6)O (5) has successfully been isolated and structurally characterized. Crystal data: 5, orthorhombic, P2(1)2(1)2(1), a = 16.238(4) ?, b = 16.225(4) ?, c = 18.371(5) ?, Z = 4. In addition, the photophysical properties of compound 1 have been investigated in detail. In single crystal absorption spectra of [Cr(III)(bpy)(3)][ClO(4)][NaCr(III)(ox)(3)] (1), the spin-flip transitions of both the [Cr(bpy)(3)](3+) and the [Cr(ox)(3)](3)(-) chromophores are observed and can be clearly distinguished. Irradiating into the spin-allowed (4)A(2) --> (4)T(2) absorption band of [Cr(ox)(3)](3)(-) results in intense luminescence from the (2)E state of [Cr(bpy)(3)](3+) as a result of rapid energy transfer processes.  相似文献   

7.
The compounds M(2)(mhp)(4), where M = Mo or W and mhp is the anion formed from deprotonation of 2-hydroxy-6-methylpyridine, are shown to react with carboxylic acids RCOOH to give an equilibrium mixture of products M(2)(O(2)CR)(n)(mhp)(4-n) where R = 2-thienyl and phenyl. The equilibrium can be moved in favor of M(2)(O(2)CR)(4) by the addition of excess acid or by the favorable crystallization of these products. The latter provides a facile synthesis of the W(2)(O(2)CR)(4) compound where R = 9-anthracene. Reactions involving 2,4,6-triisopropyl benzoic acid, TiPBH, yield M(2)(TiPB)(2)(mhp)(2) compounds as thermodynamic products. Reactions involving Me(3)OBF(4) (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(CH(3)CN)(2)BF(4) and Mo(2)(mhp)(2)(CH(3)CN)(4)(BF(4))(2), respectively. The latter compound has been structurally characterized and shown to have mirror symmetry with two cis mhp ligands: MoMo = 2.1242(5) A, Mo-O = 2.035(2) A, Mo-N(mhp) = 2.161(2) A, and Mo-N(CH(3)CN) = 2.160(3) and 2.170(3) A. Reactions involving Mo(2)(mhp)(3)(CH(3)CN)(2)(2+) and Mo(2)(mhp)(2)(CH(3)CN)(4)(2+) with (n)Bu(4)NO(2)CMe (1 and 2 equiv.) yield the complexes Mo(2)(mhp)(3)(O(2)CMe) and Mo(2)(mhp)(2)(O(2)CMe)(2) which are shown to be kinetically labile to ligand scrambling. Reactions between Mo(2)(mhp)(3)(CH(3)CN)(2)(+)BF(4)(-) (2 equiv.) and [(n)Bu(4)N(+)](2)[O(2)C-X-CO(2)](2-) yielded dimers of dimers [Mo(2)(mhp)(3)](2)(micro-O(2)C-X-CO(2)] where X = nothing, 2,5- or 3,4-thienyl and 1,4-C(6)H(4). Reactions between Mo(2)(mhp)(2)(CH(3)CN)(4)(2+)(BF(4)(-))(2) and tetra-n-butylammonium oxalate and terephthalate yield compounds [Mo(mhp)(2)bridge](n) which by MALDI-TOF MS are proposed to be a mixture of molecular squares (n = 4) and triangles (n = 3) along with minor products of [Mo(2)(mhp)(3)](2)(bridge) and Mo(2)(mhp)(4) that arise from ligand scrambling.  相似文献   

8.
The reactivity of [MoS(4)](2-) (1) toward PMe(3) was explored in the presence and absence of proton donors. Whereas MeCN solutions of (Et(4)N)(2)[MoS(4)] and PMe(3) are stable, in the presence of H(2)S such solutions catalyze formation of H(2) and SPMe(3). Addition of NH(4+) to such solutions afforded MoS(2)(PMe(3))(4) (2), which can be prepared directly from (NH(4))(2)[1]. Compound 2 is reactive toward thiols via a process proposed to involve the initial dissociation of one PMe(3) ligand, a hypothesis supported by the relative inertness of trans-MoS(2)(dmpe)(2). Benzene solutions of 2 react with EtSH to give Mo(2)(mu-S)(mu-SH)(PMe(3))(4)(SEt)(3) (3Et). Analogous reactions with thiocresol (MeC(6)H(4)SH) and H(2)S gave Mo(2)(mu-S)(mu-SH)(PMe(3))(4)(SR)(3) (R = tol, H). Crystallographic analyses of 3Et, 3H, and 3tol indicate dinuclear species with seven terminal ligands and a Mo(2)(mu-SR)(mu-S) core (r(Mo)(-)(Mo) = 2.748(1) A). From reaction mixtures leading to 3Et from 2, we obtained the intermediate Mo(IV)(2)(mu-S)(2)(SEt)(4)(PMe(3))(2) (4), an edge-shared bis(trigonal pyramidal) structure. Compounds 3H and 3Et react further with H(2)S to give Mo(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SH)(2) (5H) and Mo(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SEt)(2) (5Et), respectively. Analogously, W(4)(mu(2)-S)(4)(mu(3)-S)(2)(PMe(3))(6)(SH)(2) was synthesized from a methanol solution of (NH(4))(2)WS(4) with H(2)S and PMe(3). A highly accurate crystallographic analysis of (NH(4))(2)MoS(4) (R(1) = 0.0193) indicates several weak NH.S interactions.  相似文献   

9.
An ionic heterometallic species [Y(DMF)(8)][Cu(4)(micro(3)-I)(2)(micro-I)(3)I(2)](1) was isolated from a solution of CuI, NH(4)I and YI(3)(Pr(i)OH)(4) in DMF-isopropoxyethanol, and was converted in a confined environment by progressive substitution of the DMF ligands with water molecules first into a 1D zig-zag structure [Y(DMF)(6)(H(2)O)(2)][Cu(7)(micro(4)-I)(3)(micro(3)-I)(2)(micro-I)(4)(I)](1infinity)(2) and finally into a 2D sheet [Y(DMF)(6)(H(2)O)(3)][Cu(I)(7)Cu(II)(2)(micro(3)-I)(8)(micro-I)(6)](2infinity)(3) by H-bond templating.  相似文献   

10.
A series of L(2) = diimine (Bian = bis(3,5-diisopropylphenylimino)acenapthene, Bu(t)(2)bpy = 4,4'-di-tert-butyl-2,2'-bipyridine) supported aqua, hydroxo, oxo, amido, imido, and mixed complexes have been prepared. Deprotonation of [L(2)Pt(mu-OH)](2)(2+) with 1,8-bis(dimethylamino)naphthalene, NaH, or KOH yields [(L(2)Pt)(2)(mu-OH)(mu-O)](+) as purple (Bian) or red (Bu(t)(2)bpy) solids. Excess KOH gives dark blue [(Bian)Pt(mu-O)](2). MeOTf addition to [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-O)](+) gives [(Bu(t)(2)bpy)(2)Pt(2)(mu-OH)(mu-OMe)](2+) while [(Bian)Pt(mu-O)](2) yields [(Bian)(2)Pt(2)(mu-OMe)(mu-O)](+). Treatment of [(Bian)Pt(mu-O)](2) with "(Ph(3)P)Au(+)" gives deep purple [(Bian)(2)Pt(2)(mu-O)(mu-OAuPPh(3))](+) while (COD)Pt(OTf)(2) gives a low yield of [(Bian)Pt(3)(mu-OH)(3)(COD)(2)](OTf)(3). Ni(Bu(t)(2)bpy)Cl(2) and [(Ph(3)PAu)(3)(mu-O)](+) in a 3 : 2 ratio yield red [Ni(3)(Bu(t)(2)bpy)(3)(mu-O)(2)](2+). M(Bu(t)(2)bpy)Cl(2) (M = Pd, Pt) and [(Ph(3)PAu)(3)(mu-O)](+) give [M(Bu(t)(2)bpy)(mu-OAuPPh(3))](2)(2+) and [Pd(4)(Bu(t)(2)bpy)(4)(mu-OAuPPh(3))](3+). Addition of ArNH(2) to [M(Bu(t)(2)bpy)(mu-OH)](2)(2+) (M = Pd, Pt) gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NHAr)(mu-OH)](2+) (Ar = Ph, 4-tol, 4-C(6)H(4)NO(2)) and [M(Bu(t)(2)bpy)(mu-NHAr)](2)(2+) (Ar = Ph, tol). Deprotonation of [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-OH)](2+) with 1,8-bis(dimethylamino)naphthalene or NaH gives [Pt(2)(Bu(t)(2)bpy)(2)(mu-NH-tol)(mu-O)](+). Deprotonation of [Pt(Bu(t)(2)bpy)(mu-NH-tol)](2)(2+) with KOBu(t) gives deep green [Pt(Bu(t)(2)bpy)(mu-N-tol)](2). The triflate complexes M(Bu(t)(2)bpy)(OTf)(2) (M = Pd, Pt) are obtained from M(Bu(t)(2)bpy)Cl(2) and AgOTf. Treatment of Pt(Bu(t)(2)bpy)(OTf)(2) with water gives the aqua complex [Pt(Bu(t)(2)bpy)(H(2)O)(2)](OTf)(2).  相似文献   

11.
Cyclic trinuclear complexes [Pd(3)(mu-pz)(6)] (1) and [Pd(3)(mu-4-Mepz)(6)] (2) and dinuclear complex [Pd(2)(mu-3-t-Bupz)(2)(3-t-Bupz)(2)(3-t-BupzH)(2)] (3) have been prepared by the reactions of [PdCl(2)(CH(3)CN)(2)] with pyrazole (pzH), 4-methylpyrazole (4-MepzH), and 3-tert-butylpyrazole (3-t-BupzH), respectively, in CH(3)CN in the presence of Et(3)N. In the absence of the base, treatment of [PdCl(2)(CH(3)CN)(2)] with pzH gave the mononuclear complex, [Pd(pzH)(4)]Cl(2) (6). The reaction of [PtCl(2)(C(2)H(5)CN)(2)] with pzH in the presence of Et(3)N under refluxing in C(2)H(5)CN afforded the known dimeric Pt(II) complex, [Pt(pz)(2)(pzH)(2)](2) (7). The protons participating in the hydrogen bonding in 3 and 7 are easily replaced by silver ions to give the heterotetranuclear complex [Pd(2)Ag(2)(mu-3-t-Bupz)(6)] (4) and the heterohexanuclear complex [Pt(2)Ag(4)(mu-pz)(8)] (5). The complexes 1-6 are structurally characterized.  相似文献   

12.
Adams RD  Kwon OS  Smith MD 《Inorganic chemistry》2002,41(24):6281-6290
The reaction of Mn(2)(CO)(9)(NCMe) with thiirane yielded the sulfidomanganese carbonyl compounds Mn(2)(CO)(7)(mu-S(2)), 2, Mn(4)(CO)(15)(mu(3)-S(2))(mu(4)-S(2)), 3, and Mn(4)(CO)(14)(NCMe)(mu(3)-S(2))(mu(4)-S(2)), 4, by transfer of sulfur from the thiirane to the manganese complex. Compound 3 was obtained in better yield from the reaction of 2 with CO, and compound 4 is obtained from the reaction of 2 with NCMe. The reaction of 2 with PMe(2)Ph yielded the tetramanganese disulfide Mn(4)(CO)(15)(PMe(2)Ph)(2)(mu(3)-S)(2), 5, and S=PMe(2)Ph. The reaction of 5 with PMe(2)Ph yielded Mn(4)(CO)(14)(PMe(2)Ph)(3)(mu(3)-S)(2), 6, by ligand substitution. The reaction of 2 with AsMe(2)Ph yielded the new complexes Mn(4)(CO)(14)(AsMe(2)Ph)(2)(mu(3)-S(2))(2), 7, Mn(4)(CO)(14)(AsMe(2)Ph)(mu(3)-S(2))(mu(4)-S(2)), 8, Mn(6)(CO)(20)(AsMe(2)Ph)(2)(mu(4)-S(2))(3), 9, and Mn(2)(CO)(6)(AsMe(2)Ph)(mu-S(2)), 10. Reaction of 2 with AsPh(3) yielded the monosubstitution derivative Mn(2)(CO)(6)(AsPh(3))(mu-S(2)), 11. Reaction of 7 with PMe(2)Ph yielded Mn(4)(CO)(15)(AsMe(2)Ph)(2)(mu(3)-S)(2), 12. The phosphine analogue of 7, Mn(4)(CO)(14)(PMe(2)Ph)(2)(mu(3)-S(2))(2), 13, was prepared from the reaction of Mn(2)(CO)(9)(PMe(2)Ph) with Me(3)NO and thiirane. Compounds 2-9 and 11-13 were characterized by single-crystal X-ray diffraction. Compound 2 contains a disulfido ligand that bridges two Mn(CO)(3) groups that are joined by a Mn-Mn single bond, 2.6745(5) A in length. A carbonyl ligand bridges the Mn-Mn bond. Compounds 3 and 4 contain four manganese atoms with one triply bridging and one quadruply bridging disulfido ligand. Compounds 5 and 6 contain four manganese atoms with two triply bridging sulfido ligands. Compound 9 contains three quadruply bridging disulfido ligands imbedded in a cluster of six manganese atoms.  相似文献   

13.
Oxidative addition of the sulfur-sulfur bond of 2,2'-pyridine disulfide (C(5)H(4)NS-SC(5)H(4)N) with L(3)W(CO)(3) [L = pyridine, (1)/(3)CHPT; CHPT = cycloheptatriene] in methylene chloride solution yields the seven-coordinate W(II) thiolate complex W(eta(2)-mp)(2)(CO)(3) (mp = monoanion of 2-mercaptopyridine). This complex undergoes slow further oxidative addition with additional pyridine disulfide, yielding W(eta(2)- mp)(4). Reaction of W(eta(2)-mp)(2)(CO)(3) with NO results in quantitative formation of the six-coordinate W(0) complex W(eta(2)-mp)(2)(NO)(2). Reaction of W(eta(2)-mp)(2)(CO)(3) with NO in the presence of added pyridine disulfide yields the seven-coordinate W(II) nitrosyl complex W(eta(2)-mp)(3)(NO) as well as W(eta(2)-mp)(2)(NO)(2) and trace amounts of W(eta(2)-mp)(4). The complex W(eta(2)-mp)(3)(NO) is formed during the course of the reaction and not by reaction of W(eta(2)-mp)(4) or W(eta(2)-mp)(2)(NO)(2) with NO under these conditions. The crystal structures of W(eta(2)- mp)(2)(CO)(3), W(eta(2)-mp)(2)(NO)(2), and W(eta(2)-mp)(3)(NO) are reported.  相似文献   

14.
Two homochiral coordination polymers, namely, [Yb(III)(3)Mn(III)(6)(L)(6)(μ(2)-OMe)(6)(isonicotinate)(2)(HOMe)(2)][Yb(III)(3)Mn(III)(6)(L)(6)(μ(2)-OMe)(6)(isonicotinate)(2)(HOMe)(4)](NO(3))(2)·6MeOH·12H(2)O (5) (H(3)L = (S,E)-4-(2-hydroxybenzylideneamino)-2-hydroxybutanoic acid) and [Yb(III)(3)Mn(III)(6)Na(L)(6)(μ(2)-OMe)(6)(OOCH)(3)]I·17H(2)O (6), have been constructed by utilizing a stable enantiopure [Yb(III)(3)Mn(III)(6)(L)(6)(μ(2)-OMe)(6)](3+) (Yb(3)Mn(6)) cluster as a precursor.  相似文献   

15.
Treatments of Mn(O(2)CR)(2) (R = Me, Ph) with NBu(4)MnO(4) in CH(3)CN or CH(3)CN/CH(2)Cl(2) in the presence of acetic acid, delta(1)-cyclohexenephosphonic acid (C(6)H(9)PO(3)H(2)), and 2,2'-bipyridine or 1,10-phenanthroline result in three novel dodecamanganese(III) clusters [Mn(12)O(8)(O(2)CMe)(6)(O(3)PC(6)H(9))(7)(bipy)(3)] (1), [Mn(12)O(8)(O(2)CPh)(6)(O(3)PC(6)H(9))(7)(bipy)(3)] (2), and [Mn(12)O(8)(O(2)CPh)(6)(O(3)PC(6)H(9))(7)(phen)(3)] (3). They have a similar Mn(12) core of [Mn(III)(12)(mu(4)-O)(3)(mu(3)-O)(5)(mu-O(3)P)(3)] with a new type of topologic structure. Solid-state dc magnetic susceptibility measurements of complexes 1-3 reveal that dominant antiferromagnetic interactions are propagated between the magnetic centers. The ac magnetic measurements suggest an S = 2 ground state for compounds 1 and 3 and an S = 3 ground state for compound 2.  相似文献   

16.
A new class of Mo/Fe/S clusters with the MoFe(3)S(3) core has been synthesized in attempts to model the FeMo-cofactor in nitrogenase. These clusters are obtained in reactions of the (Cl(4)-cat)(2)Mo(2)Fe(6)S(8)(PR(3))(6) [R = Et (I), (n)Pr (II)] clusters with CO. The new clusters include those preliminarily reported: (Cl(4)-cat)MoFe(3)S(3)(PEt(3))(2)(CO)(6) (III), (Cl(4)-cat)(O)MoFe(3)S(3)(PEt(3))(3)(CO)(5) (IV), (Cl(4)-cat)(Pyr)MoFe(3)S(3)(PEt(3))(2)(CO)(6) (VI), and (Cl(4)-cat)(Pyr)MoFe(3)S(3)(P(n)Pr(3))(3)(CO)(4) (VIII). In addition the new (Cl(4)-cat)(O)MoFe(3)S(3)(P(n)Pr(3))(3)(CO)(5) cluster (IVa), the (Cl(4)-cat)(O)MoFe(3)S(3)(PEt(3))(2)(CO)(6)cluster (V), the (Cl(4)-cat)(O)MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (Va), the (Cl(4)-cat)(Pyr)MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (VIa), and the (Cl(4)-cat)(P(n)Pr(3))MoFe(3)S(3)(P(n)Pr(3))(2)(CO)(6) cluster (VII) also are reported. Clusters III-VIII have been structurally and spectroscopically characterized. EPR, zero-field (57)Fe-M?ssbauer spectroscopic characterizations, and magnetic susceptibility measurements have been used for a tentative assignment of the electronic and oxidation states of the MoFe(3)S(3) sulfur-voided cuboidal clusters. A structural comparison of the clusters with the MoFe(3)S(3) subunit of the FeMo-cofactor has led to the suggestion that the storage of reducing equivalents into M-M bonds, and their use in the reduction of substrates, may occur with the FeMo-cofactor, which also appears to have M-M bonding. On the basis of this argument, a possible N(2)-binding and reduction mechanism on the FeMoco-cofactor is proposed.  相似文献   

17.
Three new compounds, PtOs(3)(CO)(12)(PBu(t)(3)) (10), Pt(2)Os(3)(CO)(12)(PBu(t)(3))(2) (11), and Pt(3)Os(3)(CO)(12)(PBu(t)(3))(3) (12), have been obtained from the reaction of Pt(PBu(t)(3))(2) with Os(3)(CO)(12) (9). The products were formed by the sequential addition of 1-3 Pt(PBu(t)(3)) groups to the three Os-Os bonds of the metal cluster of Os(3)(CO)(12). In solution, compounds 10-12 interconvert among themselves by intermolecular exchange of the Pt(PBu(t)(3)) groups. When 11 is treated with PPh(3), the mono- and bis(PPh(3)) derivatives of 9, Os(3)(CO)(11)(PPh(3)) and Os(3)(CO)(10)(PPh(3))(2), were obtained by elimination of the Pt(PBu(t)(3)) groups together with one and two CO ligands, respectively. When heated, compound 11 was transformed into the new compound Pt(2)Os(3)(CO)(10)(PBu(t)(3))(PBu(t)(2)CMe(2)CH(2))(mu-H) (13) by the loss of two CO ligands and a metalation of one of the methyl groups of one of the PBu(t)(3) ligands. Compounds 10-13 have been characterized by single-crystal X-ray diffraction analyses.  相似文献   

18.
Addition of formate on the dicationic cluster [Pd(3)(dppm)(3)(mu(3)-CO)](2+) (dppm=bis(diphenylphosphinomethane) affords quantitatively the hydride cluster [Pd(3)(dppm)(3)(mu(3)-CO)(mu(3)-H)](+). This new palladium-hydride cluster has been characterised by (1)H NMR, (31)P NMR and UV/Vis spectroscopy and MALDI-TOF mass spectrometry. The unambiguous identification of the capping hydride was made from (2)H NMR spectroscopy by using DCO(2) (-) as starting material. The mechanism of the hydride complex formation was investigated by UV/Vis stopped-flow methods. The kinetic data are consistent with a two-step process involving: 1) host-guest interactions between HCO(2) (-) and [Pd(3)(dppm)(3)(mu(3)-CO)](2+) and 2) a reductive elimination of CO(2). Two alternatives routes to the hydride complex were also examined : 1) hydride transfer from NaBH(4) to [Pd(3)(dppm)(3)(mu(3)-CO)](2+) and 2) electrochemical reduction of [Pd(3)(dppm)(3)(mu(3)-CO)](2+) to [Pd(3)(dppm)(3)(mu(3)-CO)](0) followed by an addition of one equivalent of H(+). Based on cyclic voltammetry, evidence for a dual mechanism (ECE and EEC; E=electrochemical (one-electron transfer), C=chemical (hydride dissociation)) for the two-electron reduction of [Pd(3)(dppm)(3)(mu(3)-CO)(mu(3)-H)](+) to [Pd(3)(dppm)(3)(mu(3)-CO)](0) is provided, corroborated by digital simulation of the experimental results. Geometry optimisations of the [Pd(3)(H(2)PCH(2)PH(2))(3)(mu(3)-CO)(mu(3)-H)](n) model clusters were performed by using DFT at the B3 LYP level. Upon one-electron reductions, the Pd--Pd distance increases from a formal single bond (n=+1), to partially bonding (n=0), to weak metal-metal interactions (n=-1), while the Pd--H bond length remains relatively the same.  相似文献   

19.
The trinuclear iron carbonyls Fe(3)(CO)(n) (n = 12, 11, 10, 9) have been studied by density functional theory using the B3LYP and BP86 functionals. The experimentally known C(2)(v) isomer of Fe(3)(CO)(12), namely Fe(3)(CO)(10)(mu-CO)(2), is found to be the global minimum below the unbridged D(3)(h) isomer analogous to the known structures for Ru(3)(CO)(12) and Os(3)(CO)(12). The lowest-energy isomer found for Fe(3)(CO)(11) is Fe(3)(CO)(9)(mu(3)-CO)(2) with iron-iron distances in the Fe(3) triangle, suggesting the one double bond (2.460 A by B3LYP and 2.450 A by BP86) and two single bonds (2.623 A by B3LYP and 2.604 A by BP86) required to give each Fe atom the favored 18-electron configuration. Two different higher-energy dibridged structures Fe(3)(CO)(9)(mu(2)-CO)(2) are also found for Fe(3)(CO)(11). The lowest-energy isomer found for Fe(3)(CO)(10) is Fe(3)(CO)(9)(mu(3)-CO) with equivalent iron-iron distances in the Fe(3) ring (2.47 A by B3LYP or BP86). The lowest-energy isomer found for Fe(3)(CO)(9) is Fe(3)(CO)(6)(mu-CO)(3) with distances in the Fe(3) triangle possibly suggesting one single bond (2.618 A by B3LYP and 2.601 A by BP86), one weak double bond (2.491 A by B3LYP and 2.473 A by BP86), and one weak triple bond (2.368 A by B3LYP and 2.343 A by BP86). A higher-lying isomer of Fe(3)(CO)(9), i.e., Fe(3)(CO)(8)(mu-CO), at approximately 21 kcal/mol above the global minimum, has iron-iron distances strongly suggesting two single bonds (2.6 to 2.7 A) and one quadruple bond (2.068 A by B3LYP and 2.103 A by BP86). Wiberg Bond Indices are also helpful in evaluating the iron-iron bond orders.  相似文献   

20.
The lability of the terminal Re-Cl bond that is cis to the bridging CO ligand in the edge-sharing bioctahedral complexes Re(2)(mu-Cl)(mu-CO)(mu-PP)(2)Cl(3)(L), where PP = Ph(2)PC(=CH(2))PPh(2) (dppE) when L = CO (1) and PP = Ph(2)PCH(2)PPh(2) (dppm) when L = CO (2) or XyINC (3), has been exploited in the preparation of mixed-metal Re(4)Pd(2), Re(2)Ag, Re(2)W, Re(2)Pt, and Re(2)Rh assemblies, in which the dirhenium units are bound to the other metals through NCS or CN bridges. These complexes, which retain the Re=Re bonds of the parent dirhenium complexes, comprise the novel centrosymmetric complex [Re(2)Cl(3)(mu-dppE)(2)(CO)(2)(mu-NCS)](2)Pd(2)(mu-SCN)(mu-NCS)Cl(2) (9), and the trimetallic complexes Re(2)Cl(3)(mu-dppE)(2)(CO)(2)[(mu-NC)Ag(CN)] (10), Re(2)Cl(3)(mu-dppE)(2)(CO)(2)[(mu-NC)W(CO)(5)] (11), [Re(2)Cl(3)(mu-dppE)(2)(CO)(2)[(mu-NC)Pt(CN)(CN-t-Bu)(2)]]PF(6) (12), [Re(2)Cl(3)(mu-dppE)(2)(CO)(2)[(mu-N(CN)(2))Rh(CO)(PPh(3))(2)]]O(3)SCF(3) (13), and Re(2)Cl(3)(mu-dppm)(2)(CO)(2)[(mu-NC)W(CO)(5)] (16). The identities of 9 and 16 have been established by X-ray crystallography, and all complexes characterized by IR and NMR spectroscopy and cyclic voltammetry. The reactions of the dicarbonyl complex 1, and the isomeric pair of complexes Re(2)Cl(4)(mu-dppm)(2)(CO)(CNXyl), which have edge-sharing bioctahedral (ESBO) (3) and open bioctahedral (OBO) (4) geometries, with Na[N(CN)(2)] and K[C(CN)(3)] have been used to prepare complexes in which the uncoordinated CN groups have the potential to coordinate other mono- or dimetal units to form extended arrays. The complexes which have been prepared and characterized are the monosubstituted species Re(2)Cl(3)(X)(mu-dppE)(2)(CO)(2) (X = N(CN)(2) (14) or C(CN)(3) (15)) and Re(2)Cl(3)(X)(mu-dppm)(2)(CO)(CNXyl) (X = N(CN)(2) (17) or C(CN)(3) (18) with ESBO structures; X = N(CN)(2) (19) or C(CN)(3) (20) with OBO structures), of which 15, 18, and 20 have been characterized by single-crystal X-ray structure determinations. The substitutional labilities of the Re-Cl bonds in the complexes Re(2)Cl(4)(mu-dppm)(2)(CO) (5), Re(2)Cl(4)(mu-dppm)(2)(CNXyl) (6), and Re(2)Cl(4)(mu-dppm)(2) (7) toward Na[N(CN)(2)] and K[C(CN)(3)] have also been explored and the complexes Re(2)Cl(3)(X)(mu-dppm)(2)(CO) (X = N(CN)(2) (21) or C(CN)(3) (22)), Re(2)Cl(3)(X)(mu-dppm)(2)(CNXyl) (X = N(CN)(2) (23) or C(CN)(3) (24)), Re(2)Cl(2)(X)(2)(mu-dppm)(2)(CNXyl) (X = N(CN)(2) (25) or C(CN)(3) (26)), Re(2)[N(CN)(2)](4)(mu-dppm)(2) (27), and Re(2)[C(CN)(3)](4)(mu-dppm)(2) (28) isolated in good yield. Single-crystal X-ray structure determinations of 24, 26, and 27 have shown that the Re-Re triple bonds present in the starting materials 5-7 are retained in these products.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号