首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The use of rolling circle amplification together with the addition of a wild-type control significantly improves the usefulness of phage display methodology as exemplified by the production of silver and platinum nanoparticles.  相似文献   

2.
The present investigation is mainly focused on the systematic preparation of chitosan nanoparticle in the potential range 1–100 nm using γ-ray irradiation. The effect of irradiation conditions in terms of physical form of chitosan, i.e. flake, colloidal and acidic solution, and γ-ray dose was studied. The molecular weights of chitosan were 10, 25, and >1000 times reduced when irradiated with the γ-ray dose as high as 100 kGy in Chi-flake, Chi-colloid, and Chi-acid, respectively. The particle size reduced to 70 nm after being irradiated to only 10 kGy γ-rays and it showed a tendency to decrease when the γ-ray doses were increased. The γ-rays effectively induced the reduction of chitosan particle size to <100 nm with narrow size distribution. The effective size reduction was particularly observed in Chi-colloid. Heterogeneous chemical conjugation of deoxycholic acid onto 10 kGy irradiated Chi-colloid resulted in narrow particle size as small as 50 nm.  相似文献   

3.
4.
This study constitutes a demonstration of the biological route to controlled nano-fabrication via modular multi-functional inorganic-binding peptides. Specifically, we use gold- and silica-binding peptide sequences, fused into a single molecule via a structural peptide spacer, to assemble pre-synthesized gold nanoparticles on silica surface, as well as to synthesize nanometallic particles in situ on the peptide-patterned regions. The resulting film-like gold nanoparticle arrays with controlled spatial organization are characterized by various microscopy and spectroscopy techniques. The described bio-enabled, single-step synthetic process offers many advantages over conventional approaches for surface modifications, self-assembly and device fabrication due to the peptides' modularity, inherent biocompatibility, material specificity and catalytic activity in aqueous environments. Our results showcase the potential of artificially-derived peptides to play a key role in simplifying the assembly and synthesis of multi-material nano-systems in environmentally benign processes.  相似文献   

5.
6.
Choi CJ  Cunningham BT 《Lab on a chip》2006,6(10):1373-1380
A method for simultaneously integrating label-free photonic crystal biosensor technology into microfluidic channels by a single-step replica molding process is presented. By fabricating both the sub-micron features of the photonic crystal sensor structure and the >10 microm features of a flow channel network in one step at room temperature on a plastic substrate, the sensors are automatically self-aligned with the flow channels, and patterns of arbitrary shape may be produced. By measuring changes in the resonant peak reflected wavelength from the photonic crystal structure induced by changes in dielectric permittivity within an evanescent field region near its surface, detection of bulk refractive index changes in the fluid channel or adsorption of biological material to the sensor surface is demonstrated. An imaging detection instrument is used to characterize the spatial distribution of the photonic crystal resonant wavelength, gathering thousands of independent sensor readings within a single fluid channel.  相似文献   

7.
8.
Asymmetric dual-phase composite membranes for oxygen separation were conveniently fabricated by an acid leaching technique. A thin dense layer of Ce0.85Sm0.15O1.925/Sm0.6Sr0.4FeO3−δ was left by controlling the degree of acid leaching, and a porous substrate of Ce0.85Sm0.15O1.925 with a fluorite structure was formed after dissolution of Sm0.6Sr0.4FeO3−δ with a perovskite structure in HCl. Thus, a thin dense layer and a porous substrate can be fabricated in a single step in which traditional shrinkage mismatch and chemical reaction between thin dense layers and porous substrates can be avoided. The thickness of the dense layer can be controlled by varying the acid leaching time. Hence, dual-phase composite membranes with high oxygen flux can be obtained.  相似文献   

9.
Controlled nanoparticle assembly by dewetting of charged polymer solutions   总被引:1,自引:0,他引:1  
In this paper, we present an alternative approach for controlled nanoparticle organization on a solid substrate by applying dewetting patterns of charged polymer solutions as a templating system. Thin films of charged polymer solutions dewet a solid substrate to form complex dewetting patterns that depend on the polymer charge density. These patterns, ranging from polygonal networks to elongated structures that are stabilized by viscous forces during dewetting, serve as potential templates for two-dimensional nanoparticle organization on a solid substrate. Thus, while nanoparticles dried in pure water undergo self-assembly to form close-packed arrays, addition of charged polymer in the dispersion leads to the formation of open structures that are directed by the dewetting patterns of the polymer solution. In this study, we focus on the application of elongated structures resulting from dewetting of high-charge-density polymer solutions to align nanoparticles of silica and gold into long chains that are several micrometers in length. The particle ordering process is a two-step mechanism: an initial confinement of the nanoparticles in the dewetting structures and self-assembly of the particles within these structures upon further drying by lateral capillary attractions.  相似文献   

10.
11.
Influences of drying and nondrying steps on structures of layer-by-layer (LbL) assembled sodium silicate/TiO(2) nanoparticles films (donated as silicate/TiO(2) films) have been systematically investigated. The nondrying LbL assembly produces highly porous silicate/TiO(2) films with large thickness. In contrast, the silicate/TiO(2) films fabricated with a drying step after each layer deposition are flat and thin without porous structures. In situ atomic force microscopy (AFM) measurements confirm that the sodium silicate and TiO(2) nanoparticles are deposited in their aggregated forms. A N(2) drying step can disintegrate the aggregated silicate and TiO(2) nanoparticles to produce thin silicate/TiO(2) films with compact structures. Without the drying steps, the aggregated silicate and TiO(2) nanoparticles are well retained, and their LbL assembly produces highly porous silicate/TiO(2) films of large thickness. The highly porous silicate/TiO(2) films are demonstrated to be useful as reusable film adsorbents for dye removal from wastewater because they can adsorb a large amount of cationic organic dyes and decompose them under UV irradiation. The present study is meaningful for exploring drying/nondrying steps for tailoring structure and functions of LbL assembled films.  相似文献   

12.
We report core-satellites (Au-Ag) coupled plasmonic nanoassemblies based on bottom-up, high-density assembly of molecular-scale silver nanoparticles on a single gold nanoparticle surface, and demonstrate direct observation and quantification of enhanced plasmon coupling (i.e., intensity amplification and apparent spectra shift) in a single particle level. We also explore metal ion sensing capability based on our coupled plasmonic core-satellites, which enabled at least 1000 times better detection limit as compared to that of a single plasmonic nanoparticle. Our results demonstrate and suggest substantial promise for the development of coupled plasmonic nanostructures for ultrasensitive detection of various biological and chemical analytes.  相似文献   

13.
制备纳米粒子组装体系是构筑纳米结构的重要方法之一,本文综述了纳米粒子组装体系的制备方法及其性质和应用研究。  相似文献   

14.
15.
The use of an inorganic perrhenate ligand in the structure of early-transition-metal alkoxide precursors permits to achieve uniform self-assembly of the primary nanoparticles produced by their hydrolysis. The latter has been carried out in a hydrocarbon reaction medium by the addition of water with vigorous stirring, either in the pure form or in solutions in parent alcohols. The self-assembly is guided by the surface charge enhanced by the presence of strongly coordinated anions as determined by zeta potential measurements. The aggregation process has been followed in real time by nanoparticle tracking analysis (NanoSight technique). The reaction products are spherical aggregates with a size that can be efficiently controlled through the polarity of the reaction medium. The produced nanobeads have been characterized by TEM, SEM-EDS, DLS, nitrogen adsorption, and FTIR. The coordination of metal centers has been investigated using EXAFS spectroscopy. The aggregates remain amorphous on thermal treatment of up to 700 °C (24 h treatment) but crystallize when treated at 1000 °C. This latter process is associated with the total loss of rhenium content and offers early-transition-metal oxides as products.  相似文献   

16.
Silver nanoparticle embedded poly(vinyl alcohol)-poly(methyl methacrylate) nanofibers, ca. 30 nm in diameter and ca. 60 microm in length, were fabricated by one-step radical-mediated dispersion polymerization using 2,2'-azobis(isobutyronitrile) to reduce the silver ions. In this methodology, PVA acted both as a gelator to form the nanofibers and as a stabilizer to protect the silver clusters from sintering.  相似文献   

17.
Superhydrophobic coatings were prepared by spraying a pigment nanoparticle suspension. By changing the type of pigment nanoparticles, the colors of the coating could be controlled. The particle size of the pigments, which determines the surface structure of the coatings, played an important role in exhibiting superhydrophobicity. The spray-coating process is applicable to a variety of materials (e.g., copper, glass, paper, coiled wire, and tied thread), and the superhydrophobicity was repairable.  相似文献   

18.
We have successfully prepared biocompatible and biodegradable hollow microspheres with sizes between 2 and 5 mum using cyclohexane droplets as a template and the N-methylated chitosan (NMC) cross-linked with glutaraldehyde (GA) as the shell. The structure, morphology, and formation process of the hollow microspheres were characterized by FT-IR, (1)H and (13)C NMR, scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The results revealed that the microspheres exhibited a very smooth and hollow structure. This work confirmed that the hollow microspheres were accomplished by fabricating on the basis of chemical cross-linking on the surface of the emulsion droplets and by removing cyclohexane as core. The results from SEM and TEM indicated that the emulsion droplets covered with cross-linked NMC in the oil-in-water system aggregated together to form a precipitate of microspheres by coagulating with acetone. Moreover, the cross-linked NMC on the surface of the microspheres continuously cured to form the tight shell, whereas the inner area became a cavity with increase of the aging time, leading to the hollow microspheres. In addition, an anti-infective drug, ofloxacin (Floxin), encapsulated in the microspheres more rapidly released to reach 90 wt % at pH 7.4 within 8 h than at pH 1.2.  相似文献   

19.
20.
The sorption of radiocobalt from aqueous as well as organic solvents by natural and treated clays has been investigated. The effect of many factors, such as time, pH, carrier concentration, etc., were studied. In was found that the uptake is maximum in neutral, or slightly alkaline solutions. The rate of sorption depends on the velocity of shaking, which may indicate the operation of the film-diffusion mechanism, in addition to some contribution from particle-diffusion mechanism, but the dependence of the rate on shaking velocity could be attributed to an increase in the surface area of the clays. The conclusion is that natural clays are well suited for the removal of radioactive cobalt with slight, if any modification. These clays may be considered superior to synthetic exchangers for the removal of60Co, if the availibility and prices of the former are taken into account.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号