首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this study, the efficiency droop of an InGaN light-emitting diode (LED) is reduced slgnlncanUy oy using a p-AlGaN/GaN superlattice last quantum barrier. The reduction in efficiency droop is mainly caused by the decrease of electron current leakage and the increase of hole injection efficiency, which is revealed by investigating the light currents, internal quantum efficiencies, energy band diagrams, carrier concentrations, carrier current densities, and radiative recombination efficiencies of three LED structures with the advanced physical model of semiconductor device (APSYS).  相似文献   

2.
We have investigated the properties of organic light emitting diodes(OLEDs)with a nanopillar patterning structure at organic–metal or organic–organic interfaces.The results demonstrate that the introduction of a nanopillar structure can improve the light extraction efficiency greatly.We also find that the number,height,and position of nanopillars all affect the light extraction of OLEDs.The maximum power efficiency of a device with an optimized nanopillar patterning mode can be improved to 2.47 times that of the reference device.This enhancement in light extraction originates from the improved injected carriers,the broadened charge recombination zone,and the intensified wave guiding effects.  相似文献   

3.
InGaN/AIlnGaN superlattice (SL) is designed as the electron blocking layer (EBL) of an InGaN/GaN-based light- emitting diode (LED). The energy band structure, polarization field at the last-GaN-barrier/EBL interface, carrier concen- tration, radiative recombination rate, electron leakage, internal quantum efficiency (IQE), current-voltage (l-V) perfor- mance curve, light output-current (L-l) characteristic, and spontaneous emission spectrum are systematically numerically investigated using APSYS simulation software. It is found that the fabricated LED with InGaN/AIInGaN SL EBL exhibits higher light output power, low forward voltage, and low current leakage compared with those of its counterparts. Meanwhile, the efficiency droop can be effectively mitigated. These improvements are mainly attributed to the higher hole injection efficiency and better electron confinement when InGaN/AIlnGaN SL EBL is used.  相似文献   

4.
The efficiency enhancement of an InGaN light-emitting diode (LED) with an A1GaN/InGaN superlattice (SL) electron-blocking layer (EBL) is studied numerically, which involves the light-current performance curve, internal quan- tum efficiency electrostatic field band wavefunction, energy band diagram carrier concentration, electron current density, and radiative recombination rate. The simulation results indicate that the LED with an A1GaN/InGaN SL EBL has better optical performance than the LED with a conventional rectangular A1GaN EBL or a normal A1GaN/GaN SL EBL because of the appropriately modified energy band diagram, which is favorable ibr the injection of holes and confinement of elec- trons. Additionally, the efficiency droop of the LED with an AIGaN/InGaN SL EBL is markedly improved by reducing the polarization field in the active region.  相似文献   

5.
<正>In this study,the characteristics of nitride-based light-emitting diodes with different last barrier structures are analysed numerically.The energy band diagrams,electrostatic field near the last quantum barrier,carrier concentration in the quantum well,internal quantum efficiency,and light output power are systematically investigated.The simulation results show that the efficiency droop is markedly improved and the output power is greatly enhanced when the conventional GaN last barrier is replaced by an AlGaN barrier with Al composition graded linearly from 0 to 15% in the growth direction.These improvements are attributed to enhanced efficiencies of electron confinement and hole injection caused by the lower polarization effect at the last-barrier/electron blocking layer interface when the graded Al composition last barrier is used.  相似文献   

6.
By introducing the distribution of the light energy density in GaN-based light-emitting diode (LED), the LED model based on the incoherent regime and the light extraction efficiency are investigated. The energy density as a function of the angle of incidence is calculated to demonstrate the mechanism of the light extraction. The deviation between the tendencies of the transmissivity of the output layer and the extraction efficiency is also demonstrated.  相似文献   

7.
In this study,the efficiency droop of an InGaN light-emitting diode(LED)is reduced significantly by using a pAlGaN/GaN superlattice last quantum barrier.The reduction in efficiency droop is mainly caused by the decrease of electron current leakage and the increase of hole injection efficiency,which is revealed by investigating the light currents,internal quantum efficiencies,energy band diagrams,carrier concentrations,carrier current densities,and radiative recombination efficiencies of three LED structures with the advanced physical model of semiconductor device(APSYS).  相似文献   

8.
The advantages of InGaN based light-emitting diodes with InGaN/GaN multilayer barriers are studied.It is found that the structure with InGaN/GaN multilayer barriers shows improved light output power,lower current leakage,and less efficiency droop over its conventional InGaN/GaN counterparts.Based on the numerical simulation and analysis,these improvements on the electrical and the optical characteristics are mainly attributed to the alleviation of the electrostatic field in the quantum wells(QWs) when the InGaN/GaN multilayer barriers are used.  相似文献   

9.
We use a simple and controllable method to fabricate GaN-based light-emitting diodes (LEDs) with 22° undercut sidewalls by the successful implementation of the inductively coupled plasma reactive ion etching (ICP-RIE). Our exper- iment results show that the output powers of the LEDs with 22° undercut sidewalls are 34.8 rnW under a 20-mA current injection, 6.75% higher than 32.6 mW, the output powers of the conventional LEDs under the same current injection.  相似文献   

10.
The characteristics of a blue light-emitting diode (LED) with a p-InA1GaN hole injection layer (HIL) is analyzed numerically. The simulation results indicate that the newly designed structure presents superior optical and electrical performance such as an increase in light output power, a reduction in current leakage and alleviation of efficiency droop. These improvements can be attributed to the p-InA1GaN serving as hole injection layers, which can alleviate the band bending induced by the polarization field, thereby improving both the hole injection efficiency and the electron blocking efficiency.  相似文献   

11.
In the present work, a series of [Fe80Ni20–O/SiO2]n multilayer thin films is fabricated using a reactive magnetron sputtering equipment. The thickness of SiO2 interlayer is fixed at 3 nm, while the thickness values of Fe80Ni20–O magnetic films range from 10 nm to 30 nm. All films present obvious in-plane uniaxial magnetic anisotropy. With increasing the Fe80Ni20–O layer thickness, the saturation magnetization increases slightly and the coercivity becomes larger due to the enlarged grain size, which could weaken the soft magnetic property. The results of high frequency magnetic permeability characterization show that films with thin magnetic layer are more suitable for practical applications. When the thickness of Fe80Ni20–O layer is 10 nm, the multilayer film exhibits the most comprehensive high-frequency magnetic property with a real permeability of 300 in gigahertz range.  相似文献   

12.
Blue InGaN light-emitting diodes (LEDs) with a conventional electron blocking layer (EBL), a common n-A1GaN hole blocking layer (HBL), and an n-A1GaN HBL with gradual A1 composition are investigated numerically, which involves analyses of the carrier concentration in the active region, energy band diagram, electrostatic field, and internal quantum efficiency (IQE). The results indicate that LEDs with an n-AIGaN HBL with gradual AI composition exhibit better hole injection efficiency, lower electron leakage, and a smaller electrostatic field in the active region than LEDs with a conven tional p-A1GaN EBL or a common n-A1GaN HBL. Meanwhile, the efficiency droop is alleviated when an n-A1GaN HBL with gradual A1 composition is used.  相似文献   

13.
We present an efficient scheme for sharing an arbitrary m-qubit state with n agents. In our scheme, the sender Alice first shares m Bell states with the agent Bob, who is designated to recover the original m-qubit state. Furthermore, Alice introduces n- 1 auxiliary particles in the initial state |0), applies Hadamard (H) gate and Controlled-Not (CNOT) gate operations on the particles, which make them entangled with one of m particle pairs in Bell states, and then sends them to the controllers (i.e., other n - 1 agents), where each controller only holds one particle in hand. After Alice performing m Bell-basis measurements and each controller a single-particle measurement, the recover Bob can obtain the original unknown quantum state by applying the corresponding local unitary operations on his particles. Its intrinsic efficiency for qubits approaches 100%, and the total efficiency really approaches the maximal value.  相似文献   

14.
Metric of States     
MA Zhi-Hao 《理论物理通讯》2008,50(11):1069-1070
Metric of quantum states plays an important role in quantum information theory. In this letter, we find the deep connection between quantum logic theory and quantum information theory. Using the method of quantum logic, we can get a famous inequality in quantum information theory, and we answer a question raised by S. Gudder.  相似文献   

15.
Y and inverted Y-type four-level schemes for optical quantum coherence systems, which may be intuitively considered to be very simple, have not been studied intensively till now. In this paper, we present the multiformity of these two types of schemes by considering that they can be classified into nine possible level styles as the second-order sub-schemes using laser fields. Further we point out the complexity of their more than one hundred realistic configurations as the third-order four-level sub-schemes that may appear in the optical quantum coherence experiments. Throughout this paper we review which configurations have been studied in some research aspects and which ones not, according to our knowledge, in order to be propitious to next steps of theoretical and experimental investigations, especially for applications in the fields of quantum optics, quantum information science, laser spectroscopy, and so on.  相似文献   

16.
The purpose of the present paper is to study the entropy hs(Ф) of a quantum dynamical systems Ф = ( L, s, Ф), where s is a bayessian state on an orthomodular lattice L. Having introduced the notion of entropy hs( Ф, A) of partition A of a Boolean algebra B with respect to a state s and a state preserving homomorphism Ф, we prove a few results on that, define the entropy of a dynamical system hs(Ф), and show its invariance. The concept of sufficient families is also given and we establish that hs (Ф) comes out to be equal to the supremum of hs (Ф,A), where A varies over any sufficient family. The present theory has then been extended to the quantum dynamical system ( L, s, Ф), which as an effect of the theory of commutators and Bell inequalities can equivalently be replaced by the dynamical system (B, s0, Ф), where B is a Boolean algebra and so is a state on B.  相似文献   

17.
许鹏  王栋  叶柳 《中国物理 B》2013,(10):119-124
We investigate the quantum characteristics of a three-particle W-class state and reveal the relationship between quan- tum discord and quantum entanglement under decoherence. We can also identify the state for which discord takes a maximal value for a given decoherence factor, and present a strong bound on quantum entanglement-quantum discord. In contrast, a striking result will be obtained that the quantum discord is not always stronger than the entanglement of formation in the case of decoherence. Furthermore, we also theoretically study the variation trend of the monogamy of quantum correlations for the three-particle W-class state under the phase flip channel, and find that the three-particle W-class state could transform from polygamous into monogamous, owing to the decoherence.  相似文献   

18.
We extend the method that Banerjee and Majhi have used to discuss Hawking radiation. Under the condition that the total energy and electrical charge of spacetime are conserved, we investigate Hawking radiation of the charged black hole by a new Tortoise coordinate transformation. Taking the reaction of the radiation of the particle to the spacetime into consideration, we not only derive the radiation spectrum that satisfies the unitary principle in quantum mechanics but also show that the contribution of ingoing particles is equal to the one of outgoing particles on the similar chemical potential term in radiation spectrum caused by charged particles.  相似文献   

19.
Based on the quantum Vlasov equation, the effect of frequency chirp on electron-positron pair production is investigated. The cycle parameter, which characterizes the laser field cycle degree within the pulse, is also considered. In both supercycle and subcycle laser pulses the frequency chirp can greatly enhance the momentum distribution function of created pairs and the pair number density. The pair number density created by a supercycle laser pulse is larger than that by a subcycle pulse under the same laser frequency and chirping. There exists an optimal cycle parameter corresponding to the maximum value of the created pair number density for different chirp rates. It is found that the pair number density is sensitive/insensitive to chirping rate when the cycle parameter lies below/above the optimal one.  相似文献   

20.
The full-core plus correlation method with multi-configuration interaction wave functions is extended to the calcu- lation of the non-relativistic energies of ls2nd (n ≤9) states for the lithium isoelectronic sequence from Z = 11 to 20. Relativistic and mass-polarization effects on the energy are calculated as the first-order perturbation correction. The quantum-electrodynamics correction is also included. The fine structure splittings are determined from the expectation values of spin-orbit and spin-other-orbit interaction operators in the Pauli-Breit approximation. Combining the term energies of lowly excited states obtained with the quantum defects calculated by the single channel quantum defect theory, each of which is a smooth function of energy and approximated by a weakly varying function of energy, the ion potentials of highly excited states (n ≥ 6) are obtained with the semi-empirical iteration method. The results are compared with experimental data in the literature and found to be closely consistent with the regularity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号