首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
于浩  郑建斌 《中国化学》2007,25(4):503-509
A copper hexacyanoferrate modified ceramic carbon electrode (CuHCF/CCE) had been prepared by two-step sol-gel technique and characterized using electrochemical methods. The resulting modified electrode showed a pair of well-defined surface waves in the potential range of 0.40 to 1.0 V with the formal potential of 0.682 V (vs. SCE) in 0.050 mol·dm^-3 HOAc-NaOAc buffer containing 0.30 mol·dm^-3 KCl. The charge transfer coefficient (a) and charge transfer rate constant (ks) for the modified electrode were calculated. The electrocatalytic activity of this modified electrode to hydrazine was also investigated, and chronoamperometry was exploited to conveniently determine the diffusion coefficient (D) of hydrazine in solution and the catalytic rate constant (kcat). Finally, hydrazine was determined with amperometry using the resulting modified electrode. The calibration plot for hydrazine determination was linear in 3.0 × 10^-6--7.5 × 10^-4 mol·dm^-3 with the detection limit of 8.0 × 10^-7 molodm^-3. This modified electrode had some advantages over the modified film electrodes constructed by the conventional methods, such as renewable surface, good long-term stability, excellent catalytic activity and short response time to hydrazine.  相似文献   

2.
A novel type of carboxylated multiwalled carbon nanotube modified electrode(c-MWCNTs/GCE) was constructed and the electrochemical properties of phenacetin(PHE) at it were studied. In a buffer solution of 0.1 mol/L HAc-NaAc(pH=5.3), PHE exhibited a couple of quasi-reversible redox peaks and an anodic peak in the poten- tial range of 0.2--1.2 V at c-MWCNTs/GCE. The peak current was proportional to the concentration of PHE in the range of 4.0× 10^-6_ 1.0 × 10^-4 mol/L with a detection limit of 1.0× 10^-6 mol/L(S/N=3). The c-MWCNTs/GCE showed excellent repeatability and stability and the electrochemical reaction mechanism of PHE was proposed. This method was used to determine the content of PHE in medical tablets and the recovery was determined to be 96.5%--104.2% by means of a standard addition method.  相似文献   

3.
Based on the micelle synergism mechanism, a chemiluminescence (CL) flow system for the determination of sulfite was described. The CL signal generated from the reaction of chlorate with sulfite in acidic solution was very weak, while the interfusion of sodium dodecylbenzenesulfonate (SDBS) resulted in a highly chemiluminescent intensity. The major goal of this work was to investigate and develop the SDBS rnicelle synergetic CL system. The mechanism was proposed and proved by spectrometry. The results indicated that the unique structure of SDBS micelles prorooted the aggregation of rhodamine 6G (Rh6G) and a much easier energy transfer, leading to a marked shift to red in the CL emission. This CL system was developed for the determination of sulfite and the concentration of sulfite was proportional to the CL intensity in the range of 5.0× 10^-8--1.0× 10^-5 mol/L with the detection limit of 1.7×10^-8 mol/L (S/N=3). The relative standard deviation was 3.3% for 1.0×10^ 6 mol/L sulfite solution with eleven repeated measurements. This method was successfully applied to the determination of sulfite in powder sugar.  相似文献   

4.
A flow-injection chemiluminescence (CL) method for the determination of melatonin based on the CL reaction of melatonin with hydrogen peroxide and sodium hypochlorite (NaOCl) in a basic alkaline solution was developed. The possible CL mechanism has been discussed, and a proposal for the reaction pathway was given that singlet oxygen was clarified to be produced in this reaction system and was responsible for the CL emission. Under the optimized conditions, the linear concentration range of application was 1.0×10^-7-2.5 × 10^-4 moloL-I with a de- tection limit of 5.0 ×10^-8 moloL-1 (S/N= 3). The relative standard deviation for eight repeated measurements of 1.0×10^-6 mol·L^-1 melatonin was 2.8%. The interferences of several important biological substances, some indole compound, cations and anions were studied. No interference was found for the anions, glucose, starch, most of cations and low concentration (less than 3.0 × 10^-6 mol·L^-1) of some biological substances and indole compound. The method was applied to the determination of melatonin in rat pineal gland and drug with satisfactory results. The sample throughput was 90 injections per hour.  相似文献   

5.
A new amperometric biosensor for hydrogen peroxide was developed based on adsorption of horseradish peroxidase at the glassy carbon electrode modified with zinc oxide nanoflowers produced by electrodeposition onto multi-walled carbon nanotubes (MWNTs) film. The morphology of the MWNTs/nano-ZnO electrode has been investigated by scanning electron microscopy (SEM), and the electrochemical performance of the electrode has also been studied by amperometric method. The resulting electrode offered an excellent detection for hydrogen peroxide at -0.11 V with a linear response range of 9.9×10^-7 to 2.9×10^-3 mol/L with a correlation coefficient of 0.991, and response time 〈5 s. The biosensor displays rapid response and expanded linear response range, and excellent stability.  相似文献   

6.
尉艳  李茂国方宾 《中国化学》2007,25(11):1622-1626
The preparation of a glassy carbon electrode modified by CeO2 nanoparticles was described, which was characterized by cyclic voltammetry and electrochemical impedance spectroscopy. In pH 6.0 buffer, the CeO2 nanoparticle modified electrode (CeO2 NP/GC) gave an excellent electrocatalytic activity for the oxidation of uric acid (UA). The catalytic current of UA versus its concentration had a good linear relation in the range of 2.0 × 10^-7-5.0 × 10^- 4 mol/L, with the correlation coefficient of 0.9986 and detection limit of 1.0 ×10^-7 mol/L. The modified electrode can be used for the determination of UA in urine, which can tolerate the interference of ascorbic acid up to 1000-fold. The method was simple, quick and sensitive.  相似文献   

7.
A carbon paste electrode modified with carbon nanotubes and ferrocene was fabricated.An electrochemical study of the modified electrode and an investigation into its efficiency for the electrocatalytic oxidation of benserazide,uric acid and folic acid were undertaken.The electrode was also used to study the electrocatalytic oxidation of benserazide using cyclic voltammetry,chronoamperometry,and square wave voltammetry(SWV).We found that the oxidation of benserazide at the surface of the modified electrode occurs at a potential about 285 mV lower than that of unmodified carbon paste electrode.SWV gave a linear dynamic range from 8.0×10-7 to 7.0×10 4 mol/L.The detection limit was 1.0×10-7 mol/L for benserazide.This modified electrode was used for the determination of benserazide,uric acid,and folic acid in an urine sample.  相似文献   

8.
A new adenosine biosensor based on aptamer probe is introduced in this article. An amino-labeled aptamer probe was immobilized on the gold electrode modified with an o-phenylenediamine electropolymerized film. When adenosine is bound specifically to the aptamer probe, the interface of the biosensor is changed, resulting in the decrement of the peak current. The response current is proportional to the amount of adenosine in sample. The used electrode can be easily regenerated in hot water. The proposed biosensor represents a linear response to adenosine over a concentration range of 1.0x 10^-7-l.0x10^-4 mol/L with a detection limit of 1.0xl0^-8 mol/L. The presented biosensor exhibits a nice specificity towards adenosine. It offers a promising approach for adenosine assay due to its excellent electrochemical properties that are believed to be very attractive for electrochemical studies and electroanalytical applications.  相似文献   

9.
唐明宇袁若  柴雅琴 《中国化学》2006,24(11):1575-1580
The third generation amperometric biosensor for the determination of hydrogen peroxide (H2O2) has been described. For the fabrication of biosensor, o-aminobenzoic acid (oABA) was first electropolymerized on the surface of platinum (Pt) electrode as an electrostatic repulsion layer to reject interferences. Horseradish peroxidase (HRP) absorbed by nano-scaled particulate gold (nano-Au) was immobilized on the electrode modified with polymerized o-aminobenzoic acid (poABA) with L-cysteine as a linker to prepare a biosensor for the detection of H2O2. Amperometric detection of H2O2 was realized at a potential of +20 mV versus SCE. The resulting biosensor exhibited fast response, excellent reproducibility and sensibility, expanded linear range and low interferences. Temperature and pH dependence and stability of the sensor were investigated. The optimal sensor gave a linear response in the range of 2.99×10^-6 to 3.55×10^-3 mol·L^-1 to H2O2 with a sensibility of 0.0177 A·L^-1·mol^-1 and a detection limit (S/N = 3) of 4.3×10^-7 mol·L^-1. The biosensor demonstrated a 95% response within less than 10 s.  相似文献   

10.
A novel hydrogen peroxide biosensor has been fabricated based on covalently linked horseradish peroxidase (HRP) onto L- glutathione self-assembled monolayers (SAMs). The SAMs-based electrode was characterized by electrochemical methods, and direct electrochemistry of HRP can be achieved with formal potential of-0.242 V (vs. saturated Ag/AgCl) in pH 7 phosphate buffer solution (PBS), the redox peak current is linear to scan rate and rate constant can be calculated to be 0.042 s^-1. The HRP-SAMs- based biosensors show its better electrocatalysis to hydrogen peroxide in the concentration range of 1 × 10^-6 mol/L to 1.2 × 10^-3 mol/L with a detection limit of 4 × 10^-7 mol/L. The apparent Michealis-Menten constant is 3.12 mmol/L. The biosensor can effectively eliminate the interferences of dopamine, ascorbic acid, uric acid, catechol and p-acetaminophen.  相似文献   

11.
A cobalt hexacyanoferrate (CoHCF) nanoparticle (size ca. 60 nm) chemically modified electrode (CME) was fabricated and the electrochemical behavior of thiols at this nanosized CoHCF CME was studied. In comparison with a bare glassy carbon (GC) electrode and with a general CoHCF CME which was electrodeposited in the traditional manner, the present nanosized CoHCF CME efficiently performed electrocatalytic oxidation for glutathione (GSH) and L-Cysteine (L-Cys) with relatively high sensitivity, outstanding stability, and long-life. Combined with high-performance liquid chromatography (HPLC), the nanosized CoHCF CME was used for electrochemical determination (ECD) of GSH and L-Cys. The peak currents were a linear function of concentrations in the range 2.0×10–7 to 2.0×10–4 mol L–1 for both GSH and L-Cys, with detection limits of 1.2×10–7 and 1.0×10–7 mol L–1, respectively. Coupled with microdialysis sampling, the HPLC–ECD system has been successfully used to assess the GSH and L-Cys content of rat striatum.  相似文献   

12.
《Analytical letters》2012,45(13):2159-2171
Abstract

The direct electrochemistry of hemoglobin (Hb) was studied by cyclic voltammetry(CV) and flow injection analysis(FIA) on a silver electrode modified by a self-assembled monolayer of lipoic acid(LA). Lipoic acid molecules can strongly adsorb onto the Ag electrode surface through the cleavage of the S-H bond and the formation of the Ag-S bond. The observed adsorption coverage of LA demonstrates that the LA molecules spontaneously form a self-assembled monolayer. Experimental data show that LA can promote the redox process of Hb at the modified electrode surface. This chemically modified electrode (CME) exhibits good stability in the CV and FIA. Linear sweep voltammetric measurement of Hb at the CME reveals a linear relationship between the oxidative peak current and the concentration of Hb in the range of 5.0×10?7-1.5×10?5 mol/L. The relative standard derivation (RSD) for six replicate measurements of 5.0×10?6 mol/L Hb in FIA is 2.8%. The detection limit is 2.0×10?7 mol/L. The reaction mechanism involves the hydrogen bond/ salt bridge formation between the carboxylate of LA and the protonated lysine residues of Hb that can enhance the electron transfer reaction. It can be used to detect Hb in real examples.  相似文献   

13.
《Analytical letters》2012,45(6):1097-1107
Abstract

Captopril, 1-[(2S)-3-mercapto-2-methyl-1-oxopropyl]-L-Proline, can be deposited onto a silver electrode by a covalent bonding method to give a long-lived and stable chemically modified electrode(CME). Since the CME is prepared with a reaction between captopril and the substrate silver, the CME being prepared by this method is very stable. Furthermore, Hemoglobin(Hb) exhibits excellent voltammetric response at the modified electrode. Differential pulse voltammetric(DPV) measurements of the protein with this CME reveal the existence of a linear relationship between the anodic peak current and the concentration of Hb in the range of 2×10?6 ~ 5×10?5 mol/L. The detection limit is 8×10?7 mol/L and the relative standard deviation of results is 5% for 6 successive determinations at 2×10-5 mol/L. The determination of Hb for a real example is carried out.  相似文献   

14.
《Analytical letters》2012,45(8):1610-1621
Abstract

Cobalt hexacyanoferrate (CoHCF) film was formed on multiwalled carbon nanotubes (MWNTs) modified gold electrode by electrodeposition from 0.5 M KCl solution containing CoCl2 and K3Fe(CN)6. The electrochemical behavior and the electrocatalytic property of the modified electrode were investigated. Compared with CoHCF/gold electrode, the CoHCF/MWNTs/gold electrode exhibits greatly improved stability and enhanced electrocatalytic activity toward the oxidation of thiosulfate. A linear range from 5.0×10?5 to 6.5×10?3 M (r=0.9990) for thiosulfate detection at the CoHCF/MWNTs/gold electrode was obtained, with a detection limit of 2.0×10?5 M (S/N=3).  相似文献   

15.
High performance liquid chromatography coupled with microdialysis sampling and electrochemical detection (HPLC–ECD) has been used to determine dopamine (DA). In the HPLC–ECD a multi-wall carbon nanotube electrode chemically modified with carboxyl groups (MWNT-COOH CME) was used as the working electrode for determination of DA. The results indicated that the MWNT-COOH CME enabled efficient electrocatalytic oxidation of DA with relatively high sensitivity and stability and long life. Peak currents for dopamine were linearly dependent on concentration in the range 5.0×10−9 to 5.0×10−5 mol L−1 and the calculated detection limit (S/N=3) was 2.5×10−9 mol L−1. The method had been successfully used to measure dopamine in rat striatal microdialysate. To study the physiological effect of nitric oxide (NO) on striatal release of DA, 0.5 mmol L−1 sodium nitroprusside (SNP) was a continuously perfused into rat striatum. This resulted in a 46% increase in DA basal level.  相似文献   

16.
A new hemoglobin (Hb) and room temperature ionic liquid modified carbon paste electrode was constructed by mixing Hb with 1‐butyl‐3‐methylimidazolium hexafluorophosphate (BMIMPF6) and graphite powder together. The Hb modified carbon ionic liquid electrode (Hb‐CILE) was further characterized by FT‐IR spectra, scanning electron microscopy (SEM) and electrochemical impedance spectroscopy (EIS). Hb in the carbon ionic liquid electrode remained its natural structure and showed good direct electrochemical behaviors. A pair of well‐defined quasireversible redox peaks appeared with the apparent standard potential (E′) as ?0.334 (vs. SCE) in pH 7.0 phosphate buffer solution (PBS). The electrochemical parameters such as the electron transfer number (n), the electron transfer coefficient (α) and the heterogeneous electron transfer kinetic constant (ks) of the electrode reaction were calculated with the results as 1.2, 0.465 and 0.434 s?1, respectively. The fabricated Hb‐CILE exhibited excellent electrocatalytic activity to the reduction of H2O2. The calibration range for H2O2 quantitation was between 8.0×10?6 mol/L and 2.8×10?4 mol/L with the linear regression equation as Iss (μA)=0.12 C (μmol/L)+0.73 (n=18, γ=0.997) and the detection limit as 1.0×10?6 mol/L (3σ). The apparent Michaelis–Menten constant (KMapp) of Hb in the modified electrode was estimated to be 1.103 mmol/L. The surface of this electrochemical sensor can be renewed by a simple polishing step and showed good reproducibility.  相似文献   

17.
The fabrication and application of a novel electrochemical detector (ED) with nano crystalline Mn-doped lead dioxide film chemically modified electrode (CME) for liquid chromatography (LC) were described. The Mn-doped PbO2 film was characterized by scanning tunnel microscope. The electrochemical behaviors of tetrahydrobiopterin, monoamine neurotransmitters and their metabolites at the CME were investigated by cyclic voltammetry and differential pulse voltammetry. It was found that the CME exhibited efficiently electrocatalytic effect on the current response of the seven analytes and the linear ranges of them were over three orders of magnitude with the detection limits being 5.0 × 10?10 mol L?1 for tetrahydrobiopterin, 2.5 × 10?10 mol L?1 for dopamine, 2.0 × 10?10 mol L?1 for norepinephrine, 5.0 × 10?10 mol L?1 for serotonin, 4.0 × 10?10 mol L?1 for 3,4-dihydroxyphenylacetic acid, 2.0 × 10?9 mol L?1 for homovanillic acid, 1.0 × 10?9 mol L?1 for 5-hydroxyindoleacetic acid. For its stability, sensitivity, convenience in preparing and long-life of activity, the Mn-doped PbO2 electrode is therefore suitable for determination of real samples. Coupled with microdialysis sampling, the application of this method for the analysis of tetrahydrobiopterin, monoamine neurotransmitters and their metablites in rat brain was satisfactory.  相似文献   

18.
《Electroanalysis》2003,15(10):892-897
A new chemically modified electrode (CME) was fabricated, which was based on the immobilization of multi‐wall carbon nanotubes fuctionalized with carboxylic group (MWNT‐COOH). The results indicated that the CME exhibited efficiently electrocatalytic oxidation for L ‐cysteine and glutathione with relatively high sensitivity, stability and long‐life. Coupled with HPLC, the MWNT‐COOH CME was utilized for amperometric detection of the thiols. The peak currents of L ‐cysteine and glutathione were linear to their concentrations ranging from 3.0×10?7 to 1.0×10?3 mol/L with the calculated detection limit (S/N=3) of 1.2×10?7, 2.2×10?7 mol/L, respectively. The method had been successfully applied to assess the contents of L ‐cysteine and glutathione in rat striatal microdialysates.  相似文献   

19.
QU  Yunhe  LIU  ye  ZHOU  Tianshu  SHI  Guoyue  JIN  Litong 《中国化学》2009,27(10):2043-2048
An electrochemical sensor was modified with multi‐wall carbon nanotubes (MWCNT) and molecularly imprinted polymer (MIP) material synthesized with acrylamide and ethylene glycol dimethacrylate (EGDMA) in the presence of 1,3‐dinitrobenzene (DNB) as the template molecule. The MWCNT and MIP layers were successively modified on the surface of a glassy carbon electrode (GCE), of which the MIP film works as an artificial receptor due to its specific molecular recognition sites. The MIP material was characterized by FT‐IR and electrochemical methods of square wave voltammetry (SWV). The interferences of other nitroaromatic compounds (NAC) such as 2,4,6‐trinitrotoluene (TNT), 1,3,5‐trinitrobenzene (TNB) and 2,4‐dinitrotoluene (DNT) to DNB were also investigated by the prepared MIP/MWCNT electrode. Compared with other traditional sensors, the MIP/MWCNT modified electrode shows good selectivity and sensitivity. In addition, the current responses to DNB are linear with the concentration ranging from 4.5×10?8 to 8.5×10?6 mol/L with the detection limits of 2.5×10?8 (?0.58 V) and 1.5×10?8 mol/L (?0.69 V) (S/N=3). The construction process of MIP/MWCNT modified electrode was also studied as well. All results indicate that the MIP/MWCNT modified electrode established an improving way for simple, fast and selective analysis of DNB.  相似文献   

20.
The highly efficient H2O2 biosensor was fabricated on the basis of the complex films of hemoglobin (Hb), nano ZnO, chitosan (CHIT) dispersed solution and nano Au immobilized on glassy carbon electrode (GCE). Biocompatible ZnO‐CHIT composition provided a suitable microenvironment to keep Hb bioactivity (Michaelis‐Menten constant of 0.075 mmol L?1). The presence of nano Au in matrix could effectively enhance electron transfer between Hb and electrode. The electrochemical behaviors and effects of solution pH values were carefully examined in this paper. The (ZnO‐CHIT)‐Au‐Hb/GCE demonstrated excellently electrocatalytical ability for H2O2. This biosensor had a fast response to H2O2 less than 4 s and excellent linear relationships were obtained in the concentration range from1.94×10?7 to 1.73×10?3 mol L?1 with the detection limit of 9.7×10?8 mol L?1 (S/N=3) under the optimum conditions. Moreover, the stability and reproducibility of this biosensor were evaluated with satisfactory results.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号