首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Pan L  Ching N  Huang X  Li J 《Inorganic chemistry》2000,39(23):5333-5340
By choosing a suitable metal center, ligand, and solvents, we have revealed several structural transformations involving a polymer precursor. infinity 1[Co(bpdc)(H2O)2].H2O (1) was prepared by reaction of Na2bpdc and Co(NO3)2 in aqueous solution. Immersing 1 in pyridine/water solutions of (2:1) and (8:1) ratios yielded a second one-dimensional structure infinity 1[Co(bpdc)(py)2(H2O)2].2py (2) and a two-dimensional structure infinity 2[Co(bpdc)(py)2].H2O (3), respectively. After heating 1 under N2 to remove all water within the structure, the compound Co(bpdc) (IR) was obtained. When IR was immersed in solutions of pyridine/water (5:4) and in pure pyridine (in air), a third one-dimensional structure of infinity 1[Co(bpdc)(py)2(H2O)2].2py.H2O (4) and 3, respectively, were obtained. Compounds 2-4 easily transformed to 1 when immersed in water. Crystal data for 1: monoclinic, space group C2/c with a = 6.950(1), b = 31.585(6), and c = 6.226(1) A, beta = 95.84(3) degrees, Z = 4. Crystal data for 2: triclinic, space group P1 with a = 9.646(2), b = 10.352(2), and c = 17.031(3) A, alpha = 79.02(3) degrees, beta = 86.88(3) degrees, gamma = 77.16(3) degrees, Z = 2. Crystal data for 3: triclinic, space group P1 with a = 9.137(2), b = 10.480(2), and c = 12.254(2) A, alpha = 102.10(3) degrees, beta = 100.80(3) degrees, gamma = 99.43(3) degrees, Z = 2. Crystal data for 4: orthorhombic, space group Pbcn with a = 13.468(3), b = 16.652 (3), and c = 14.977(3) A, Z = 4.  相似文献   

2.
A series of new 1D chain and 2D coordination polymers with cyclotriguaiacylene-type ligands are reported. A zig-zag 1D coordination chain is found in complex [Cd(2)(4ph4py)(NO(3))(3)(H(2)O)(2)(DMA)(2)]·(NO(3))·(DMA)(4), where 4ph4py = tris[4-(4-pyridyl)benzoyl]-cyclotriguaiacylene and DMA = dimethylacetamide, while complex [Zn(4ph4py)(2)(CF(3)COO)(H(2)O)]·(CF(3)COO)(NMP)(7), where NMP = N-methylpyrrolidone, has a doubly bridged coordination chain structure. Complexes [M(3ph3py)(NO(3))(2)]·(NMP)(4) where M = Co or Zn, 3ph3py = tris[3-(3-pyridyl)benzoyl]cyclotriguaiacylene, are isostructural and feature 1D ladder coordination chains. Complexes [Cd(2)(4ph4py)(2)(NO(3))(4)(NMP)]·(NMP)(9)(H(2)O)(4) and [Co(4ph4py)(H(2)O)(2)]·(NO(3))(2)·(DMF)(2), where DMF = dimethylformamide, both have (3,4)-connected 2D coordination polymers with a rare (4(2).6(2))(4.6(2))(2) topology. A 2D coordination polymer with this topology is also found in complex [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)]·(NO(3))(3)·(DMF)(9) where 3ph4py = tris[3-(4-pyridyl)benzoyl]cyclotriguaiacylene. All 2D coordination polymer complexes are interpenetrating or polycatenating. [Co(2)(3ph4py)(2)(NO(3))(H(2)O)(5)](3+)polymers form a 2D→3D polycatenation showing self-complementary "hand-shake" interactions between the host-type ligands.  相似文献   

3.
王艳艳  代纪香  张千峰 《结构化学》2009,28(10):1187-1189
A novel layered mixed metal vanadium-cobadt complex, (py)5Co2(H2O)3[V4O12] 1 (py = pyridine), was hydro(solvo)thermally synthesized and characterized by single-crystal X-ray diffraction. It crystallizes in orthorhombic, space group Pca21 with a = 17.473(4), b = 11.447(2), c = 17.509(4)A^°, V = 5005.3(7)A^°3, Z = 4, Mr = 3502.1(12), Z = 4, Dc = 1.827 g/cm^3,μ(MoKα) = 2.023 mm^-1, F(000) = 1928, S = 1.020, the final R = 0.0400 and wR= 0.1063 for 6035 observed reflections with I 〉 2σ(I) and 460 variables. Complex 1 consists of tetrahedral VO4 groups to form the large layers which are alternately bonded by two cobalt complex species Co(py)2(H2O)2 and Co(py)3(H2O).  相似文献   

4.
YUAN Li  LU Wen-Guan 《结构化学》2011,30(8):1207-1213
A new 3D metal-organic framework of {[Co3(IDC)2(bipy)2(py)2]·7H2O}n (1) was obtained by the hydrothermal reaction of Co(NO3)2·6H2O, imidazole-4,5-dicarboxylic acid (H3IDC), 4,4'-bipyridine (bipy), and pyridine (py), and structurally characterized by elemental analysis, infrared spectroscopy, thermal gravimetric analysis, and single-crystal X-ray diffraction. X-ray diffraction crystal structural analysis reveals that it crystallizes in orthorhombic system, space group Pccn with a = 11.1040(3), b = 19.8834(5), c = 21.3025(5), V = 4703.3(2)3, Mr = 1079.63, Z = 4, Dc = 1.525 Mg·m-3, F(000) = 2212, μ(CuKα) = 8.855 mm-1, the final R = 0.0331 and wR = 0.0713 for 2525 observed reflections with I ≥ 2σ(I). In compound 1, each cobalt(II) ion is six-coordinated with a slightly distorted octahedral coordination geometry, and each μ3-IDC3- acts as a bridge to bond three neighboring Co(II) ions, leading to an infinite 2D network layer structure of [Co3(IDC)2]n with Kagomé lattice. The adjacent layers are further linked by μ2-bipy to form an infinite 3D layered-pillared framework architecture of [Co3(IDC)2(bipy)2(py)2]n.  相似文献   

5.
Combined electrochemical and UV-visible spectroelectrochemical methods were utilized to elucidate the prevailing mechanisms for electroreduction of previously synthesized porphyrin-corrole dyads of the form (PCY)H2Co and (PCY)MClCoCl where M = Fe(III) or Mn(III), PC = porphyrin-corrole, and Y is a bridging group, either biphenylenyl (B), 9,9-dimethylxanthenyl (X), anthracenyl (A), or dibenzofuranyl (O). These studies were carried out in pyridine, conditions under which the cobalt(IV) corrole in (PCY)MClCoCl is immediately reduced to its Co(III) form, thus enabling direct comparisons with the free-base porphyrin dyad, (PCY)H2Co(III) under the same solution conditions. The compounds are all reduced in multiple one-electron-transfer steps, the first of which involves the M(III)/M(II) process of the porphyrin in the case of (PCY)MClCoCl and the Co(III)/Co(II) process of the corrole in the case of (PCY)H2Co. Each metal-centered redox reaction may be accompanied by the gain or loss of pyridine axial ligands, with the exact stoichiometry of the exchange process depending upon the specific combination of metal ions in the dyad, their oxidation states, and the particular spacer in the complex. Before this study was started, it was expected that the porphyrin-corrole dyads with the largest spacers, namely, O and A, would readily accommodate the formation of cobalt(III) bis-pyridine adducts because of the larger size of the cavity while dyads with the smallest B spacer would seem to have insufficient room to add even a single pyridine within the cavity, as was structurally seen in the case of (PCB)H2Co(py). This is clearly not the case, as shown in the present study. A reversible Co(III)/Co(II) reaction is seen for (PCB)MnClCoCl at -0.62 V, which when combined with spectroscopic data, leads to the assignment of (PCB)Mn(III)(py)2Co(III)(py) as the species in pyridine. The reduction of (PCB)Mn(III)(py)2Co(III)(py) to (PCB)Mn(II)(py)Co(III)(py) is accompanied on the slower spectroelectrochemical time scale by the appearance of a 603 nm band in the UV-vis spectra and is consistent with the addition of a second pyridine ligand to the Co(III)(py) unit of the dyad as one ligand is lost from the electrogenerated manganese(II) porphyrin, thus maintaining one pyridine ligand within the cavity. A different change in the coordination number is observed in the case of (PCB)FeClCoCl. Here the initial Fe(III) complex can be assigned as (PCB)Fe(III)ClCo(III)(py), which has no pyridine molecule within the cavity and the singly reduced form is characterized as (PCB)Fe(II)(py)2Co(III)(py)2, which contains two pyridine ligands inside the cavity. A following one-electron reduction of the Fe(II)/Co(III) complex then gives [(PCB)Fe(II)(py)2Co(II)]-.  相似文献   

6.
The reactions of Co(CIO4)2.6H2O and Co(NO3)2·6H2O with the di-Schiff base ligand N,N'-bis-(1-benzimidazo-2-yl-ethylidene)-ethane-1,2-diamine (LA) in ethanol have been investigated.The reactions of LA with excess amount of cobalt salts yield the six-coordinate complexes [CoL2](CIO4)2·H2O 1 and [CoL2](NO3)2·H2O 2 as isolatable products (L = N-(1-benzimidazo-2-yl-ethylidene)-ethane-1,2-diamine), where L is a tri-dentate mono-Schiff base ligand, resulting from the hydrolysis of the precursor di-Schiff base LA.Both complexes were characterized by X-ray crystallography.Crystal data for complex 1: monoclinic, space group P21/c, a = 11.9214(10), b = 23.5828(17), c = 14.0387(12)(A), β= 135.219[4]°,C22H30CI2CoN9O9,Mr = 680.37, V = 2780.1(4)(A)3, Z = 4, Dc = 1.625 g/cm3,μ(MoKa) = 0.876 mm-1, F(000) = 1404,the final R = 0.0725 and wR = 0.1530 for 5726 observed reflections (I>2σ(I)).Crystal data for complex 2: monoclinic, space group P21/c, a = 18.2162(16), b = 10.0610(6), c = 18.593(2)(A),β=130.099(3)°, C22H30CoN10O7, Mr = 605.49, V = 2606.5(4)(A)3, Z = 4, Dc = 1.543 g/cm3,μ(MoKα)= 0.722 mm-1, F(000) = 1260, the final R = 0.0619 and wR = 0.1429 for 5194 observed reflections (I > 2σ(I)).X-ray diffraction analysis reveals that each cobalt atom in the two complexes is chelated by six nitrogen atoms from two tridentate iigands L, exhibiting a slightly distorted octahedral coordination sphere.In both complexes, the strong hydrogen-bonding interactions between the lattice waters and N-H groups of the ligands result in 1D chains which are further connected by ClO4- (or NO3-) groups to form a 3D framework.In complex 2, the strong π-π interactions increase the stability of the structure.  相似文献   

7.
采用水热法合成了配位聚合物[Co2(HBTC)2(H2O)6]·C4H10N2·2H2O}n(H3BTC为1,3,5-均苯三羧酸,C4H10N2为哌嗪),通过X射线单晶衍射、红外光谱和荧光光谱进行表征,并用TGA研究了该配位聚合物的热稳定性.晶体属三斜晶系,P1空间群,a=1.05437(9)nm,b=1.05485(9)nm,c=0.71482(5)nm,α=102.4623(28)°,β=91.3500(42)°,γ=111.0186(29)°,V=0.72018(10)nm3,Mr=764.37,Dc=1.762g·cm-3,Z=1,μ(MoKα)=1.25mm-1,F(000)=394,R=0.0307,wR=0.0815.晶体的基本构建单元中包含2个Co()中心、2个配位的HBTC分子和6个配位的水分子.基本构建单元通过相互链接形成具有“Z”型结构的一维配位聚合链,链间通过两种不同的氢键(O—H…O和N—H…O)相互作用,进而形成具有三维骨架结构的微孔晶体,微孔大小为0.71nm×0.82nm.荧光光谱表明,常温下用λex=312nm的光激发后,配位聚合物在329nm处出现强烈的荧光发射.  相似文献   

8.
在水-吡啶混合体系中, 以5-羟基-1,3-苯二甲酸(简作HO-H2BDC )、1,2-二(4-吡啶)乙烷(简作bpe)为配体与Co(NO3)2·6H2O反应, 培养出[Co2(HO-BDC)2(bpe)2(H2O)2]n·n(py)·nH2O(py=pyridine)的紫色单晶, 该晶体属三斜晶系, P1空间群, 晶胞参数a=1.0245(3) nm, b=1.1467(3) nm, c=1.2430(4) nm, α=68.915(5)°, β=67.163(4)°, γ=71.373(4)°, V=1.2279(6) nm3, Z=1, Mr=979.70, Dc=1.325 Mg/m3, F(000)=506, μ=0.740 mm-1, R1=0.0515, wR2=0.1058. 该配位聚合物中在ac平面上具有规则平行四边形纳米尺寸的孔, 其孔径大小约为1.025 nm×1.354 nm, 而且通过氢键相互作用连成具有双层结构的2D网络结构. TGA曲线表明, 配位聚合物的失重发生在110~150 ℃之间, 总失重约为80.1%, 最终产物为Co2O3.  相似文献   

9.
The molecular structure and crystal-packing mode of the enantiopure chiral building blocks Delta-[Ru(bpy)(2)(py)(2)][(+)-O,O'-dibenzoyl-D-tartrate].12H(2)O (I) and Lambda-[Ru(bpy)(2)(py)(2)][(-)-O,O'-dibenzoyl-L-tartrate].12H(2)O (II) have been determined by single-crystal X-ray diffraction data. This study proposes a model of how the L- and D-dibenzoyltartrate anions recognize the chirality of the hydrophobic [Ru(bpy)(2)(py)(2)](2+) complex. The monoclinic unit cell contains four complex cations, four tartrate anions, and 48 water molecules. Since there are no possibilities to form hydrogen bonds between the cations and anions, chiral recognition is due to crystal packing. Two benzoyl rings of two different tartrate anions are gripping the two bpy-planes of the Ru-complex. Further a third benzoyl ring from a tartrate anion is packed between the two pyridine rings, favoring one enantiomeric form to crystallize from aqueous solution. Crystal structure data for I at 153 K: a = 15.342(3) A, b = 19.200(4) A, c = 18.872(4) A, beta = 104.841(3) degrees, monoclinic space group C(2), R(1)= 0.0239 (I > 2sigma(I)), R(2) = 0.0606, Flack parameter = 0.0115 (with esd 0.0166). For II at 293 K: a = 15.376(4) A, b = 19.388(11) A, c = 19.085(7) A, beta = 105.11(2) degrees, monoclinic space group C121, R(1)= 0.0686 (I > 2sigma(I)), R(2) = 0.1819, Flack parameter = -0.0100 (with esd 0.0521).  相似文献   

10.
A new sandwich transition metal substituted polyoxotungstate,[NH3(CH2)4NH3]6 [Co4(H2O)2(B-α-GeW9O34)2]·7H2O 1,was hydrothermally synthesized and characterized by IR spectra and single-crystal X-ray diffraction.The single-crystal X-ray analysis reveals that the crystal crystallizes in monoclinic system,space group P21/c with a=16.6073(6),b=15.3333(5),C=19.9869(7)(A),β=103.41(1)°,Mr=5481.38,V=4950.8(3)(A)3,Z=2,Dc=3.677 g/cm3,F(000)=4900,μ(MoKα)=22.165 mm-1,GOOF=1.005,the final R=0.0228 and wR=0.0527.The crystal structure indicates that the[Co4(H2O)2(B-α-GeW9O34)2]12-polyoxoanion contains two trivacant Keggin[B-α-GeW9O34]10-fragments in a staggered fashion linked via a rhomb-like Co4O16 group in a centrosymmetric arrangement(C2h symmetry)leading to a sandwich-type structure.  相似文献   

11.
The 1:1 mixture of Co(Brhfpip)(2) and D1py(2) gave isomeric diazocobalt complexes, 1 and 2, formulated by [Co(Brhfpip)(2)(D1py(2))](n). Complexes 1 and 2 have zigzag and linear chain structures by the cis and trans coordination of pyridine units in D1py(2), respectively. After irradiation of microcrystalline samples, the generated carbene interacted with the cobalt ion to form ferromagnetic chains, 1c and 2c. Those isomeric chains exhibited slow magnetic relaxation with U(eff) = 93 and 87 K and H(c) = 20 and 13 kOe at 1.9 K for 1c and 2c, respectively.  相似文献   

12.
The new borates Fe(II)(6)B(22)O(39)·H(2)O (colourless) and Co(II)(6)B(22)O(39)·H(2)O (dichroic: red/bluish) were synthesised under the high-pressure/high-temperature conditions of 6 GPa and 880 °C (Fe)/950 °C (Co) in a Walker-type multi-anvil apparatus. The compounds crystallise in the orthorhombic space group Pmn2(1) (Z=2) with the lattice parameters a=771.9(2), b=823.4(2), c=1768.0(4) pm, V=1.1237(4) nm(3), R(1)=0.0476, wR(2)=0.0902 (all data) for Fe(6)B(22)O(39)·H(2)O and a=770.1(2), b=817.6(2), c=1746.9(4) pm, V=1.0999(4) nm(3), R(1)=0.0513, wR(2)=0.0939 (all data) for Co(6)B(22)O(39)·H(2)O. The new structure type of M(6)B(22)O(39)·H(2)O (M=Fe, Co) is built up from corner-sharing BO(4) tetrahedra and BO(3) groups, the latter being distorted and close to BO(4) tetrahedra if additional oxygen atoms of the neighbouring BO(4) tetrahedra are considered in the coordination sphere. This situation can be regarded as an intermediate state in the formation of edge-sharing tetrahedra. The structure consists of corrugated multiple layers interconnected by BO(3)/BO(4) groups to form Z-shaped channels. Inside these channels, iron and cobalt show octahedral (M1, M3, M4, M5) and strongly distorted tetrahedral (M2, M6) coordination by oxygen atoms. Co(II)(6)B(22)O(39)·H(2)O is dichroic and the low symmetry of the chromophore [Co(II)O(4)] is reflected by the polarised absorption spectra (Δ(t)=4650 cm(-1), B=878 cm(-1)).  相似文献   

13.
The coordination polymer {[Co(phth)(phen)(H2O)]·(C2H5OH)}n (phth = phthalate, phen = 1,10-phenanthroline) with formula C22H20CoN2O6 (Mr = 467.33) was synthesized by the solvothermal method under low temperature, and its crystal structure was determined by singlecrystal X-ray diffraction. The complex belongs to monoclinic system, space group P21/n with a =12.7352(16), b = 8.8125(11), c = 18.677(2) (A), β = 102.633(2)°, V = 2045.3(4) (A)3, Z = 4, Dc =1.518 g/cm3,μ = 0.882 mm-1, F(000) = 964, S = 1.053, the final R = 0.0401 and wR = 0.0984 for 3135 observed reflections (I > 2σ(I)). Single-crystal X-ray analysis revealed that the Co(Ⅱ) ion is six-coordinated. The cobalt complex forms a one-dimensional chain structure via phthalate bridging ligand. In the cobalt complex, a 3D network structure is formed by π-π stacking interaction of 1,10-phenanthroline as well as intermolecular hydrogen bonding interactions.  相似文献   

14.
A series of metal-organic frameworks (MOFs) based upon the ligand 2,6-diphenyl-1,4-dibenzoic acid [Ph2C6H2(CO2H)2]infinity have been prepared and characterized by X-ray crystallography. The networks exhibit a variety of topologies and coordination modes at the metal center. The reaction of the ligand with cobalt(II) nitrate or zinc(II) nitrate in methanol/pyridine results in the formation of isostructural 1-D chains [(Ph2C6H2(CO2)2)M(py)2(MeOH)]infinity, where M = Zn, Co; however, in the presence of ethanol and triethylamine, Zn(NO3)2 reacts to form a 2-D clay-like network, [(Ph2C6H2(CO2)2)Zn(EtOH)2]infinity. 2-D networks are also formed in similar reactions with copper(II) nitrate or silver(I) nitrate to give [(Ph2C6H2(CO2)(CO2H))2Cu(py)2]infinity, [(Ph2C6H2(CO2)CO2H))2Cu(py)4.2H2O](infinity), and [(Ph2C6H2(CO2)2)Ag2]infinity, respectively. The hydrogen-bonded chains formed by the ligand alone and with 4,4'-dipyridyl are also described.  相似文献   

15.
A novel (Z)-nitromethylene neonicotinoid analogue (C23H27Cl2N5O4·2H2O) (II) with optical activity has been synthesized, the structure was characterized by elemental analysis, IR and 1H NMR spectra, and the (Z)-configuration was confirmed by single-crystal X-ray diffraction. The crystal belongs to triclinic, space group P1 with a = 7.4638(3), b = 12.6232(5), c = 15.2990(6), α = 71.907(1), β = 89.397(2), γ = 80.314(1)°, V = 1349.28(9)3, Z = 2, Dc = 1.340 g/cm3, μ = 0.286 mm-1, Mr = 544.43, F(000) = 572, S = 1.056, R = 0.0801 and wR = 0.2366 for 4998 unique reflections with 3012 observed ones (I > 2σ(I)). In the crystal, the dihedral angle between the pyridine and 4-Cl-phenyl rings is 58.13°. Intermolecular O–H···O, C–H···O and C–H···Cl hydrogen bonds involving water molecules stabilize the crystal structure.  相似文献   

16.
A series of linear coordination polymers, metallacycles of cadmium(II) and mercury(II) of flexible carboxylic acid ligands, RCH{3-CH(3)-,5-CH(3)-,6-(-OCH(2)CO(2)H)C(6)H(2)}(2), (when R = C(6)H(5), (H(2)L(1)); 2-NO(2)C(6)H(4)- (H(2)L(2)) and 3-NO(2)C(6)H(4)- (H(2)L(3))) are synthesized and characterized. [CdL(1) (py)(3)](n)·3nH(2)O (py = pyridine) is a linear coordination polymer, whereas [CdL(2)(py)(CH(3)OH)](2)·CH(3)OH is a dinuclear complex of cadmium with a Cd(2)O(2) type of core. The latter is obtained from reaction of cadmium(II) acetate with H(2)L(2) in methanol followed by reaction with pyridine. A similar reaction of cadmium(II) acetate with H(2)L(2) in dimethylformamide results in the formation of a cadmium metallacycle, namely [CdL(2) (py)(2)(H(2)O)](2)·H(2)O. The H(2)L(3) reacted with cadmium(II) acetate in the presence of pyridine to form a metallacycle [CdL(3)(py)(2)(H(2)O)](2)·3H(2)O. The ligand H(2)L(2) form mercury(II) metallacycle [HgL(2)(4-mepy)(2)](2) in the presence of 4-methylpyridine (4-mepy) and the ligand H(2)L(3) forms metallacycle [HgL(3)(3-mepy)(2)](2)·DMF in the presence of 3-methylpyridine (3-mepy). The potassium salts of H(2)L(1) and H(2)L(2) were found to be coordination polymers and these potassium coordination polymers were structurally characterized.  相似文献   

17.
Four cobalt supramolecular architectures with Hmtyaa(2-(5-methyl-1,3,4-thiadiazol-2-ylthio)acetic acid) ligand have been synthesized.[Co(mtyaa)2(H2O)4]·4(H2O)(1):triclinic,space group P1 with a = 6.7537(18),b = 8.591(2),c = 10.615(3) ,α = 96.495(4),β = 99.955(5),γ = 103.615(5)°,V = 581.9(3) 3,Z = 1,Mr = 581.52,Dc = 1.659 g/m3,μ = 1.158 mm-1,F(000) = 301,Rint = 0.0557,R = 0.0377 and wR = 0.1056 for 1854 observed reflections with Ⅰ 2σ(Ⅰ);{[Co(4,4'-bipy)(H2O)4]·2(mtyaa)·2(H2O)}n(2):triclinic,space group P1 with a = 7.669(2),b = 8.840(3),c = 11.521(4) ,α = 79.912(5),β = 73.954(5),γ = 86.612(6)°,V = 738.9(4) 3,Z = 1,Mr = 701.67,Dc = 1.577 g/m3,μ = 0.924 mm-1,F(000) = 363,Rint = 0.0636,R = 0.0498 and wR = 0.1311 for 2155 observed reflections with Ⅰ 2σ(Ⅰ);{[Co(4,4'-bipy)(mtyaa)(H2O)3](mtyaa)·2(H2O)}(3):monoclinic,space group Pc with a = 7.7832(17),b = 11.527(3),c = 31.483(7) ,β = 91.952(4)°,V = 2822.9(11) 3,Z = 4,Mr = 683.65,Dc = 1.609 g/m3,μ = 0.963 mm-1,F(000) = 1412,Rint = 0.0758,R = 0.0609 and wR = 0.1095 for 5841 observed reflections with I 2σ(I);{[Co(bpe)(mtyaa)2(H2O)2]}n(4):monoclinic,space group C2/c with a = 19.290(11),b = 12.027(7),c = 14.865(8) ,β = 125.648(8)°,V = 2802(3)3,Z = 4,Mr = 657.66,Dc = 1.559 g/m3,μ = 0.959 mm-1,F(000) = 1356,Rint = 0.0456,R = 0.0332 and wR = 0.0985 for 2299 observed reflections with Ⅰ 2σ(Ⅰ).  相似文献   

18.
Three new cation-cation complexes of pentavalent uranyl, stable with respect to the disproportionation reaction, have been prepared from the reaction of the precursor [(UO(2)py(5))(KI(2)py(2))](n) (1) with the Schiff base ligands salen(2-), acacen(2-), and salophen(2-) (H(2)salen = N,N'-ethylene-bis(salicylideneimine), H(2)acacen = N,N'-ethylenebis(acetylacetoneimine), H(2)salophen = N,N'-phenylene-bis(salicylideneimine)). The preparation of stable complexes requires a careful choice of counter ions and reaction conditions. Notably the reaction of 1 with salophen(2-) in pyridine leads to immediate disproportionation, but in the presence of [18]crown-6 ([18]C-6) a stable complex forms. The solid-state structure of the four tetranuclear complexes, {[UO(2)(acacen)](4)[μ(8)-](2)[K([18]C-6)(py)](2)} (3) and {[UO(2)(acacen)](4)[μ(8)-]}?2?[K([222])(py)] (4), {[UO(2)(salophen)](4)[μ(8)-K](2)[μ(5)-KI](2)[(K([18]C-6)]}?2?[K([18]C-6)(thf)(2)]?2?I (5), and {[UO(2)(salen)(4)][μ(8)-Rb](2)[Rb([18]C-6)](2)} (9) ([222] = [222]cryptand, py = pyridine), presenting a T-shaped cation-cation interaction has been determined by X-ray crystallographic studies. NMR spectroscopic and UV/Vis studies show that the tetranuclear structure is maintained in pyridine solution for the salen and acacen complexes. Stable mononuclear complexes of pentavalent uranyl are also obtained by reduction of the hexavalent uranyl Schiff base complexes with cobaltocene in pyridine in the absence of coordinating cations. The reactivity of the complex [U(V)O(2)(salen)(py)][Cp*(2)Co] with different alkali ions demonstrates the crucial effect of coordinating cations on the stability of cation-cation complexes. The nature of the cation plays a key role in the preparation of stable cation-cation complexes. Stable tetranuclear complexes form in the presence of K(+) and Rb(+), whereas Li(+) leads to disproportionation. A new uranyl-oxo cluster was isolated from this reaction. The reaction of [U(V)O(2)(salen)(py)][Cp*(2)Co] (Cp* = pentamethylcyclopentadienyl) with its U(VI) analogue yields the oxo-functionalized dimer [UO(2)(salen)(py)](2)[Cp*(2)Co] (8). The reaction of the {[UO(2)(salen)(4)][μ(8)-K](2)[K([18]C-6)](2)} tetramer with protons leads to disproportionation to U(IV) and U(VI) species and H(2)O confirming the crucial role of the proton in the U(V) disproportionation.  相似文献   

19.
The title compound [Cu(HSSA)(py)3H2O]n (H3SSA = 5-sulfosalicylic acid,py = pyridine) Ⅰ has been synthesized and structurally determined by single-crystal X-ray diffraction. Ⅰ was further characterized by elemental analyses,thermogravimetric analyses,IR and UV-visible spectroscopy. The crystal belongs to the monoclinic system,space group P21/c with a = 9.4564(10),b = 18.2679(19),c = 15.7284(12) ,β = 126.045(4)o,V = 2196.9(4) 3,Z = 4,Dc = 1.618 g/cm3,Mr = 535.02,μ = 1.141 mm-1,F(000) = 1100,λ(MoKα) = 0.71073 ,the final R = 0.0429 and wR = 0.1044 for all observed reflections. In the structure,every two Cu(Ⅱ) atoms are bridged by a bivalent 5-sulfosalicylic anion to form a 1D chain-like coordination polymer. Lattice waters between chains link them to form 2D layers which are further linked by C-H···O hydrogen bonds to form a three-dimensional supramolecular network.  相似文献   

20.
A novel cobalt complex,[Co2(bptc)(bix)1.5](1,H4bptc=3,3',4,4'-biphenyltetra-carboxylic acid,bix = 1,4-bis(imidazol-1-ylmethyl)benzene),has been hydrothermally prepared and characterized by IR spectroscopy,elemental analysis and single-crystal X-ray diffraction.The crystal is of triclinic system,space group P1 with a=10.770(7),b=12.245(8),c=13.514(9),α=102.829(8),β=107.734(8),γ=98.833(9)°,C37H27N6O8Co2,Mr=801.51,V=1607.5(18)3,Dc=1.656g/cm3,F(000)=818,μ=1.100mm-1,Z=2,the final R = 0.0694 and wR = 0.1543 for 3034 observed reflections(I2σ(I)).In the title complex,the two Co(Ⅱ) ions are in different coordination environments with distorted octahedral and trigonal bipyramidal geometries,respectively.The Co atoms are linked together through hexadentate bptc ligands,giving rise to 2D layers which are bridged by the bix ligands into a 3-D supramolecular network.Magnetic susceptibilities of 1 reveal weak antiferromagnetic exchange interactions between the adjacent Co(Ⅱ) ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号