首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Isothermal crystallization behavior of water at −30 °C in PVME aqueous solution with the PVME concentration in the range of 40-60 wt% was investigated in detail by time-dependent infrared spectroscopy and two dimensional correlation analysis. The result suggests that when the PVME concentration is between 40 and 60%, the crystallization rate decreases with increasing PVME concentration, and the crystallization of water in low temperature is kinetically controlled. Of particular interest is that the so-called “unfrozen bound water” can be frozen slowly when PVME aqueous solution is annealed at a suitable low temperature. The crystallization mechanism of water in PVME/water system is elucidated by 2D correlation analysis.  相似文献   

2.
Time-resolved infrared spectroscopy has been used to study the melt crystallization behavior of poly(3-octylthiophenes) (P3OT), which is a typical conductive polymer among the family of poly(3-alkylthiophenes) (P3ATs). It is found that, during the isothermal crystallization process at high temperature, the alkyl side chains of P3OT always keep in disordered state, whereas the ordering packing of conjugated backbone takes place. In order to reveal the structural changes and the crystallization kinetics corresponding to the main-chain ordering process, two spectral regions that associated with π–π stacking and the effective conjugation length of P3OT have been analyzed in detail. The characteristic IR bands of crystalline and amorphous phase are identified in each spectral region. Moreover, a simple spectral method has been proposed to calculate the evolution of crystallinity during the isothermal crystallization process of P3OT. Of particular note, the distinct one-dimensional growth kinetic of P3OT crystal has been revealed by Avrami analysis.  相似文献   

3.
Nonisothermal crystallization and melting behavior of poly(3-hydroxybutyrate) (PHB) and maleated PHB were investigated by differential scanning calorimetry using various cooling rates. The results show that the crystallization behavior of maleated PHB from the melt greatly depends on cooling rates and its degree of grafting. With the increase in cooling rate, the crystallization process for PHB and maleated PHB begins at lower temperature. For maleated PHB, the introduction of maleic anhydride group hinders its crystallization, causing crystallization and nucleation rates to decrease, and crystallite size distribution becomes wider. The Avrami analysis, modified by Jeziorny, was used to describe the nonisothermal crystallization of PHB and maleated PHB. Double melting peaks for maleated PHB were observed, which was caused by recrystallization during the heating process.  相似文献   

4.
This paper reports the analysis of the C=O stretching region of poly(L-lactide). This spectral band splits into up to four components, a phenomenon that a priori can be explained in terms of carbonyl-carbonyl coupling or specific interactions (such as C-H...O hydrogen bonding or dipole-dipole). Hydrogen bonding can be discarded from the analysis of the C-H stretching spectral region. In addition, low molecular weight dicarbonyl compounds of chemical structure similar to that of PLLA, such as diacyl peroxides, show a remarkable splitting of the carbonyl band attributed to intramolecular carbonyl-carbonyl coupling. Several mechanisms can be responsible for this behavior, such as mechanical coupling, electronic effects, or through-space intramolecular TDC (transition dipole coupling) interactions. Intermolecular dipole-dipole interactions (possible in the form of interchain TDC interactions) are proven to be of minor relevance taking into account the spatial structure of the PLLA conformers. The Simply Coupled Oscilator (SCO) model, which only accounts for mechanical coupling, has been found to predict adequately the relative intensity of the symmetric and asymmetric bands of dicarbonyl compounds. The dispersion curves predicted for PLLA by the SCO model also match those given by more general treatments, such as Miyazawa's first-order perturbation theory. Hence, the SCO model is adopted here as an adequate yet simple tool for the interpretation of band splitting caused by intramolecular coupling of polylactide. The four components observed in the C=O stretching band of semicrystalline PLLA are attributed to the four possible conformers: gt, gg, tt, and tg. The narrow bands observed for the interlamellar material are attributed to highly ordered chains, indicating the absence of a truly amorphous phase in the crystalline polymer. The interphase seems to extend over the whole interlamellar region, showing the features of a semiordered metastable phase. In amorphous PLLA, bands corresponding to gt, gg, and tt conformers also can be resolved by second derivative techniques, and curve-fitting results provide information about the conformational population at different temperatures.  相似文献   

5.
Infrared reflection–absorption (IR-RAS) and transmission spectra were measured for poly(3-hydroxybutyrate) (PHB) thin films to explore its specific crystal structure in the surface region. As IR-RAS is sensitive to the vibration mode of perpendicular orientation of the surface, differences between IR-RAS and transmission spectra indicate an orientation of the lamella structure in the surface of PHB thin films. The relative intensity of the crystalline CO stretching band in the IR-RAS spectrum is significantly weaker than that in the transmission spectrum. It may be concluded that the transient dipole moment of the CO stretching mode of the crystalline state is not oriented perpendicular but nearly parallel to the substrate surface. On the other hand, the relative intensity of the band at 3009 cm−1 due to the C–H stretching mode of the C–HOC hydrogen bonding is similar between the IR-RAS and transmission spectra, suggesting that the C–H bond is oriented neither perpendicular nor parallel to the substrate surface but in an intermediate direction. Since the CO group of the C–HOC hydrogen bonding is oriented nearly parallel to the surface and its C–H group is in the intermediate direction, it is very likely that the C–HOC hydrogen bonding has a somewhat bent structure. These results are in good agreement with our previous conclusion that the C–HOC hydrogen bonding of PHB exists along the a-axis (not the b-axis) between the CH3 group of one helix and the CO group of another helix.  相似文献   

6.
Annealing was performed for ultrahigh molecular weight polyethylene (UHMWPE), including an isothermal process at 110.0°C and cooling process from 110.0 to 30.0°C. The processes were in situ investigated by confocal micro-Raman spectroscopy combined with two-dimensional correlation spectroscopy. Two phase transitions were directly observed in the annealing processes, i.e., from the amorphous phase to the intermediate phase and from the intermediate phase to the crystalline phase. The phase transitions derive from molecular chain segments sliding between different phases of UHMWPE and occur in different orders during the isothermal and cooling processes.  相似文献   

7.
A method based on noise perturbation in functional principal component analysis (NPFPCA) is for the first time introduced to overcome the noise interference problem in two-dimensional correlation spectroscopy (2D-COS). By the systematic addition of synthetic noise to the dynamic multivariate spectral data, the functional principal component analysis (FPCA) described in this report is able to accurately determine which eigenvectors are representing significant signals instead of noise in the original data. This feature is especially useful for the data reconstruction and noise filtering. Reconstructed data resulted from the smooth eigenvectors can produce much more reliable 2D correlation spectra by removing the correlation artifacts from noise, which in turn enable more accurate interpretation of the spectral variations. The usefulness of this method is demonstrated with a theoretical framework and applications to the 2D correlation analyses of both simulated data and temperature-dependent reflection-absorption infrared spectra of a poly(3-hydroxybutyrate) (PHB) thin film.  相似文献   

8.
Principal component analysis-based two-dimensional (PCA2D) correlation spectroscopy, combined with the eigenvalue manipulating transformation (EMT) of a spectral data set, was applied to the temperature-dependent IR spectra of poly(hydroxybutylate) (PHB). In asynchronous PCA2D correlation spectrum, we clearly captured the existence of two components in the crystalline band of the C=O stretching mode, well-ordered primary crystals observed at lower wavenumber and less ordered secondary crystals observed at higher wavenumber, which is not readily detectable in the 1D spectra. By lowering the power of a set of eigenvalues associated with the original data, subtle differences in the thermal responses of PHB, which are difficult to observe even by conventional 2D correlation analysis, are revealed. When the contributions from minor factors are enhanced by eigenvalue manipulating transformation, intensities of bands assignable to the amorphous component of PHB are accentuated more in the C-O-C stretching region, while the intensities of bands assignable to the crystalline component become most prominent in the CH stretching region. However, the 2D correlation between CH and C=O stretching region reveals that the spectral intensity change of the CH(3) stretching bands at 2975 cm(-1) contains a component due to the amorphous contribution.  相似文献   

9.
In the present study, the molecular chain changes and structural transitions of partially hydrolyzed poly(vinyl alcohol) (PVA) having a 12 mol% acetate unit were analyzed by moving-window two-dimensional (MW2D) correlation infrared spectroscopy combined with differential scanning calorimetry and thermogravimetric analysis. The results show the glass-transition temperature (T g ) of PVA is clearly distinguished by MW2D correlation infrared spectroscopy, and the acetate groups start to be eliminated around the melting temperature, whereas the free water molecules in PVA are eliminated above T g. The correlation movements of the O–H stretching modes, including the free hydroxyl groups and the hydrogen bonds, are clearly determined using MW2D correlation infrared spectroscopy. The spectral variations in the C=O stretching region caused by the elimination of the acetate unit from polymer chains are also discussed on the basis of the results of the MW2D correlation analysis. Such results cannot be obtained by traditional infrared spectroscopy owing to the complex overlapping peaks.
Figure
The structural variations of partially hydrolyzed poly(vinyl alcohol) studied by moving-window two-dimensional correlation infrared spectroscopy  相似文献   

10.
The orientation of poly(3-hydroxybutyrate) (PHB) and poly(lactic acid) (PLA) segments in PHB/PLA blend films cast from chloroform solutions with compositions PHB < PLA was studied during uniaxial elongation up to 250% strain at 50 °C by in-situ rheo-optical FT-IR spectroscopy. From the orientation functions of the ν(CO) bands of the blend components, it was derived that the PLA chains orient in the direction of elongation while the PHB chains orient perpendicular to the drawing direction. PHB homopolymer and PHB/PLA blend films with PHB > PLA compositions could only be oriented by cold drawing in ice water after quenching from the melt. The IR-dichroic effects of films drawn under these conditions indicate for both blend components a chain alignment parallel to the drawing direction.  相似文献   

11.
Structural evolution of poly(lactic acid) (PLA) upon uniaxial stretching was studied with in-situ polarized infrared spectroscopy measurements, and its structural change affected by annealing was also investigated. Band shifting was used to reflect the structural ordering process. It was found that the band at 1302 cm−1 always moves to low wavenumbers before crystallization, indicating the occurrence of intermolecular packing ordering. However, the band at 869 cm−1 shifts to high wavenumbers, which is related to the transition from the amorphous phase to the ordered phase. Interestingly, during stretching, the shifting for the band at 1302 cm−1 always occurs before that for the lower wavenumber band, whereas these two band shifts take place simultaneously under annealing. Based on the different characteristics of the structural evolution under stretching and annealing processes, a critical temperature was found at around 63 °C, which influences the effect weight of kinetic and thermodynamic factors to the crystallization behavior. The effect of the drawing temperature on crystallization and mechanical property of PLA films was also analyzed.  相似文献   

12.
Poly(3-hydroxybutyrate), PHB has been structurally modified through reaction with maleic anhydride, MA. Transesterification reaction was carried out fixing the PHB and MA and besides time and temperature the concentration of the triethylamine (used as catalyst) was changed. Glass transition, melting and crystallization temperature obtained from DSC curves and thermal degradation temperatures obtained from TG traces were used to evaluate the influence of the reaction conditions on the modification of PHB according to factorial design. On the base of the results the optimum conditions are to perform the PHB modification reaction with MA reaction at 110°C for 1 h with 5% v/v triethylamine.  相似文献   

13.
The effect of ultraviolet radiation on the properties of poly(3-hydroxybutyrate) (PHB) was studied. The PHB investigated is produced from microbial fermentation using saccharose from sugarcane as the carbon source to the bacteria. The material was exposed to artificial UV-A radiation for 3, 6, 9 and 12 weeks. The photodegradation effect was followed by changes of molecular weight, of chemical and crystalline structures, of thermal, morphological, optical and mechanical properties, as well as of biodegradability. The experimental results showed that PHB undergoes both chain scission and crosslinking reactions, but the continuous decrease in its mechanical properties and the low amount of gel content upon UV exposure indicated that the scission reactions were predominant. Molar mass, melting temperature and crystallinity measurements for two layers of PHB samples with different depth suggested that the material has a strong degradation profile, which was attributed to its dark colour that restricted the transmission of light. Previous photodegradation initially delayed PHB biodegradability, due to the superficial increase in crystallinity seen with UV exposure. The possible reactions taking place during PHB photodegradation were presented and discussed in terms of the infrared and nuclear magnetic resonance spectra. A reference peak (internal standard) in the infrared spectra was proposed for PHB photodegradation.  相似文献   

14.
Principal component analysis-based two-dimensional (PCA2D) correlation spectroscopy was applied to the temperature-dependent infrared-reflection absorption (IRRAS) spectra of a spin-coated film of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) (P(HB-co-HHx)) (HHx=7.2 mol%) copolymer. In asynchronous PCA2D correlation spectra, we clearly captured the existence of two components in the crystalline band of the CO stretching mode, well-ordered primary crystals observed at lower wavenumber and less ordered secondary crystals observed at higher wavenumber, which is not readily detectable in the original 1D spectra. Furthermore, the intensity changes of bands at 1298 and 1280 cm(-1) are significantly different in the temperature ranges below and above the transition temperature around 140 degrees C identified by the 2D first derivatives plot. The result further confirms that the sequence of intensity changes with increasing temperature is such that bands for less ordered crystalline components of P(HB-co-HHx) (HHx=7.2 mol%) are changing first at an earlier (i.e., lower temperature) stage.  相似文献   

15.
This paper reports the pH-induced structural changes in the surface immobilized poly(L-lysine)(PLL)film.Two-dimensional(2D) correlation analysis was applied to the Fourier transform infrared(FTIR)spectra of the surface-immobilized PLL film to examine the spectral changes induced by the alternations of the protonation state of the amino group in the side chain.Significant spectral changes in the FTIR spectra of the PLL film were observed between pH 7 and 8.The decrease in the protonation state of the amino group in the side chain induced spectral changes in the amino group as well as conformational changes in the alky]group in the side chain.From pH 1-8,the spectral changes in the amino and alkyl groups in the side chain occurred before those of the amide group in the main chain of the surface immobilized PLL film.  相似文献   

16.
Block copolymerization by using isocyanates is an effective method for incorporating PHB and PEG because it can prepare copolymers with good properties, such as toughness, strength, and so on. In this study, we adopted soil suspension system to estimate the biodegradability of a series of PHB/PEG multiblock copolymers with different compositions and block lengths. In the degradation process, the changes in weight loss, molecular weight, and tensile strength were periodically measured to determine the biodegradability, and the surface morphology was also observed by SEM. In contrast to pure PHB, the weight loss of the copolymer was relatively lower. On the other hand, the tensile strength and molecular weight experienced apparent decrease, and for BHG1000-3-1, they reached 46.7% and 77.7% of the initial value, respectively. SEM observation showed that the surface was covered with numerous erosion pits. All these indicate that the degradation indeed took place and long-chain molecules have been hydrolyzed into shorter ones. The crystallization behavior was also investigated by DSC and WAXD. The results showed that both the segments, PEG and PHB, can form crystalline phases at lower PHB contents ranging from 29% to 44%, and when PHB component was more than 60%, only PHB phase can crystallize.  相似文献   

17.
In the present study, 3D FT-IR spectroscopic imaging measurements were applied to study the phase separation of a poly(3-hydroxybutyrate) (PHB)/poly(l-lactic acid) (PLA) (50:50 wt.%) polymer blend film. While in 2D projection imaging the z-dependent information is overlapped, thereby complicating the analysis, FT-IR spectro-micro-tomography, obtained from computed tomographic back projection calculations, results in distinct 3D chemical images that provide detailed information of phase separation of the two polymer components that are well separated.  相似文献   

18.
Electron-beam-irradiated poly(3-hydroxybutyrate) was used as a nucleating agent for poly(3-hydroxybutyrate) in a melt-spinning process. Molecular data and thermal properties of the irradiated samples were determined. The thermal properties of the nucleated melts were determined to assess the influence of the nucleation agents, and then spinning tests were carried out. Thermal and textile properties of the spun fibers were also determined. Estimations of the improvement of the crystallization in the spinline and of the inhibition of secondary crystallization in the fibers from the use of the described blood-compatible nucleation agents are given.  相似文献   

19.
20.
The homogeneity of blends of poly((R)-3-hydroxybutyrate) (PHB) and poly(L-lactic acid) (PLLA) was evaluated by the near infrared chemical imaging (NIRCI) technique. NIRCI can nondestructively investigate a sample over a wide field of view within a few minutes to acquire a large number of spatially resolved NIR spectral data. NIRCI may be combined with multivariate analysis not only for qualitative analysis but also for statistically based quantitative analysis. The score images derived from the partial least squares regression (PLSR) analysis directly show that PHB/PLLA blends are highly homogeneous. The standard deviations (STD) of the histograms, indicating the distribution of the score values, show small values for the blends. These results qualitatively and quantitatively show the high level of homogeneity of PHB/PLLA blends. The predictions of the spatially averaged concentrations of the blend components obtained from PLSR results show values similar to the actual contents for the blends. The small errors of the predictions are also explained by STD values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号