首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The behavior of the electronic system of heavy-fermion metals is considered. We show that there exist at least two main types of the behavior when the system is near quantum critical point, which can be identified as the fermion condensation quantum phase transition (FCQPT). We show that the first type is represented by the behavior of a highly correlated Fermi liquid, while the second type is depicted by the behavior of a strongly correlated Fermi liquid. If the system approaches FCQPT from the disordered phase, it can be viewed as a highly correlated Fermi liquid which at low temperatures exhibits the behavior of Landau Fermi liquid (LFL). At higher temperatures T, it demonstrates the non-Fermi liquid (NFL) behavior which can be converted into the LFL behavior by the application of magnetic fields B. If the system has undergone FCQPT, it can be considered as a strongly correlated Fermi liquid which demonstrates the NFL behavior even at low temperatures. It can be turned into LFL by applying magnetic fields B. We show that the effective mass M* diverges at the very point that the Neél temperature goes to zero. The B-T phase diagrams of both liquids are studied. We demonstrate that these B-T phase diagrams have a strong impact on the main properties of heavy-fermion metals, such as the magnetoresistance, resistivity, specific heat, magnetization, and volume thermal expansion.  相似文献   

2.
We present results of theoretical calculations of the quasiparticle lifetimes in pure Al and Pb which are due to the electron-phonon interaction. A four-plane-wave model is used to describe the electronic structure and the coupling with the phonons. The lattice dynamics is taken from inelastic neutron scattering data. At a given temperature (T) the lifetimes (τ) display considerable variation with position on the Fermi surface (FS). At several points on the FS we obtain through a least-squares fit to our numerical output on the low temperature variation of τ, the best power law of the form ATα with A and α constants. The exponent α is found to vary significantly from point to point.  相似文献   

3.
Several recent studies of phonons combining inelastic neutron scattering and first-principles calculations are summarized. Inelastic neutron scattering was used to measure the phonon densities of states of the A15 compounds V3Si, V3Ge, and V3Co at temperatures from 10 K to 1273 K. It was found that phonons in V3Si and V3Ge, which are superconducting at low temperatures, exhibit an anomalous stiffening with increasing temperature, whereas phonons in V3Co have a normal softening behavior. Additional measurements of the phonon DOS of BCC V alloys were performed, and it was found that a stiffening anomaly present in pure V is suppressed upon introduction of extra d-electrons by alloying. First-principles calculations of the electronic and phonon densities of states show that in both these systems, the anomalous phonon stiffening originates with an adiabatic electron–phonon coupling mechanism. The anomaly is caused by the thermally-induced broadening of sharp peaks in the electronic density of states, which tends to decrease the electronic density at the Fermi level. These results illustrate how the combined use of first-principles calculations and inelastic neutron scattering provides powerful insights into couplings of excitations in condensed-matter.  相似文献   

4.
Compared with d-band metals of the same valency, La shows a similar anomalous thermal behaviour to that observed for Ce (e.g. low melting point, low Debye frequency). We show that the soft phonons in these systems are induced by the ?-band, which is known to intersect the Fermi level in α-Ce and to lie slightly above it in La. We therefore calculate the RPA dielectric constant for a simple two-band model of d-and ?-electrons and show that it is enhanced due to the high density of states of the ?-band near the Fermi energy. The phonon frequencies, renormalized by this enhanced dielectric constant, are thus lowered.  相似文献   

5.
The electronic structure of CaFe2As2, a parent compound of iron-based superconductors, is studied with high-resolution angle-resolved photoemission spectroscopy. The electronic structure of CaFe2As2 in the paramagnetic state is consistent with that of density-functional theory calculations. We show that the electronic structure of this compound is significantly reconstructed when entering the spin density wave state. We could resolve two hole-like pockets and four electron-like pockets around the (0, 0) point, and one electron-like pocket surrounded with a pair of electron- and hole-like pockets around the (π, π) point in the spin density wave state. Therefore, the complicated Fermi surface topology and electronic structure near Fermi surface of CaFe2As2 illustrate that there exists unconventional electronic reconstruction in the spin density wave state, which cannot be explained by the band folding and Fermi surface nesting pictures.  相似文献   

6.
The density of empty electronic states in solid and liquid nickel has been determined employing Auger electron appearance potential spectroscopy. The observed increase of the density-of-states at the Fermi level by a factor of 1.4 in the liquid is in good agreement with available resistivity data. An increase of d-holes from 0.6 to 1.0 upon fusion is also found and interpreted in terms of a reduced d-d-interaction in the liquid state.  相似文献   

7.
The electron-phonon-induced damping of optical phonons arising in metals and strongly doped semiconductors under laser irradiation is investigated. The damping of both short-wave KVF > ω0 and long-wave KVF < ω0 optical phonons is calculated; K is the wavevector, ω0 is the frequency of the optical phonon; VF is the Fermi velocity. The electron- phonon-induced damping is important if the frequency of the optical phonon is larger than two frequencies of acoustic phonons of all branches in the range of the whole Brillouin zone. The damping of a soft transverse optical phonon in narrow-gap ferroelectric-semiconductors is also defined by the electron-phonon interaction. In other cases the main relaxation process for optical phonons in metals is the decay into two acoustic phonons due to lattice anharmonicity.  相似文献   

8.
The effect of optical phonons scattering on electronic current has been studied in metallic carbon nanotubes. The current has been calculated self-consistently by total voltage equation and the heat transport equation. The total voltage equation consists of three terms, optical phonons collision term, acoustic phonon scattering term, and contact resistance one. Including LO, A1, and E1(2) phonons in collision term, we can reproduce the experimental I-V curves displaying negative differential conductance. Furthermore, one conclusion is made that the more optical phonons are scattered by electron, the lower current is in metallic carbon nanotubes. By comparing the current under different conditions, we can make another conclusion that there should be nonequilibrium optical phonons under high bias in spite of whether the metallic nanotube is suspended or not. This result agrees well with the others [M. Lazzeri, F. Mauri, Phys. Rev. B 73 (2006) 165419]. Based on these results, we do not only explain the experiment, but also propose to design a heat-controlling electronic transistor with metallic carbon nanotubes as its channel, in which the electronic current can be controlled by optical phonons.  相似文献   

9.
In a quasi-one-dimensional conductor, the phonons with anomaly at the Fermi diameter, 2kF, cause the phonons at 4kF to soften via the three-phonon coupling, mainly due to the phonon modulation of the Coulomb interaction between tight-binding electrons on different sites. The 2kF phonons also cause strong second-order scatterings of X-rays or neutrons. These results may explain the recent observations of phonon anomalies at 4kF in TTF-TCNQ.  相似文献   

10.
It is well-known that low-energy electronic excitations in high-T c superconductors have energies of the order of the exchange couplingJ, i.e. of the same order as the phonon energies. Therefore, low-energy electronic excitations and phonons should strongly influence each other. To investigate this problem we consider a coupled electron-phonon system. For the electronic degrees of freedom we start from the three band Hubbard or Emery model. In analogy to the transformation of the three band Hubbard model to thet?J model, studied by Zhang and Rice, we derive an effective electron-phonon interaction. Its electronic degrees of freedom are those of thet?J model which couple to the phonons of the original system. The coupling of electrons and phonons is discussed by means of the phonon Green function for a breathing-like mode.  相似文献   

11.
Low dimensional (LD) metallic oxides have been a subject of continuous interest in the last two decades, mainly due to the electronic instabilities that they present at low temperatures. In particular, charge density waves (CDW) instabilities associated with a strong electron-phonon interaction have been found in Molybdenum metallic oxides such as KMo6O17 purple bronze. We report an angle resolved photoemission (ARPES) study from room temperature (RT) to T ∼40 K well below the Peierls transition temperature for this material, with CDW transition temperature TCDW ∼120 K. We have focused on photoemission spectra along ΓM high symmetry direction as well as photoemission measurements were taken as a function of temperature at one representative kF point in the Brillouin zone in order to look for the characteristic gap opening after the phase transition. We found out a pseudogap opening and a decrease in the density of states near the Fermi energy, EF, consistent with the partial removal of the nested portions of the Fermi surface (FS) at temperature below the CDW transition. In order to elucidate possible Fermi liquid (FL) or non-Fermi liquid (NFL) behaviour we have compared the ARPES data with that one reported on quasi-1D K0.3MoO3 blue bronze.  相似文献   

12.
We report on the first direct numerical evidence of doping-induced transformation of Tomonaga-Luttinger liquid to Fermi liquid in quasi-one-dimensional lithium doped trans-polyacetylene chain. Using density functional theoretical calculation, an analysis of density of states near the Fermi energy reveals a power-law scaling factor of Tomonaga-Luttinger liquid at low dopant concentration in the metallic regime. As soon as the doping level reaches 0.0763e/C, normal power-law scaling factor of Fermi liquid has been realized as a special case of Luttinger liquid in one dimension. The variation of density-density correlation is consistent with the present theoretical prediction.  相似文献   

13.
By exact solution of time-dependent Schrödinger equation of electron in graphene under interaction with E2g phonons, we investigate the dynamical behavior of Dirac quasi-particle in the process of lattice vibration. Due to the global geometric phases acquired by electron during lattice vibration, an anomalous shift of the vibration frequency is obtained. We calculate the Fermi energy dependence of frequency shift which is in consistence with experiment in case of small doping density.  相似文献   

14.
M. E. Manley 《哲学杂志》2013,93(21):2467-2473

Since phonons are built on the free energy of electrons, their frequencies can be altered by thermal electronic excitations, implying that thermal electronic excitations can alter the phonon entropy. The effect of this extra phonon entropy on electronic distribution functions and thermodynamic properties is calculated in the limit of classical vibrations. The phonon entropy stabilizes electrons above the Fermi level by more than the usual k B T. The thermodynamic coupling of electron and phonon degrees of freedom allows far more heat capacity than in equivalent independent systems. The method developed is used to explain uranium data from the literature.  相似文献   

15.
We have studied the superconducting properties of MgB2 from first-principles under isotropic, uniaxial, and biaxial compressions. We find that the in-plane boron phonons near the zone-center are very anharmonic and strongly coupled to the planar B σ bands near the Fermi level. This mode is found to be the key to quantitatively explain the observed high Tc, the total isotope effect and the pressure dependence of Tc. We propose that a stringent test on the hole and phonon based theories of the superconductivity in MgB2 would be a measurement of the biaxial ab-compression dependence of Tc.  相似文献   

16.
We present an overview of the electronic properties of iron arsenic high temperature superconductors with emphasis on low energy band dispersion, Fermi surface and superconducting gap. ARPES data is compared with full-potential linearized plane wave (FLAPW) calculations. We focus on single layer NdFeAsO0.9F0.1 (R1111) and two layer Ba1?xKxFe2As2 (B122) compounds. We find general similarities between experimental data and calculations in terms of character of Fermi surface pockets, and overall band dispersion. We also find a number of differences in details of the shape and size of the Fermi surfaces as well as the exact energy location of the bands, which indicate that magnetic interaction and ordering significantly affects the electronic properties of these materials. The Fermi surface consists of several hole pockets centered at Γ and electron pockets located in zone corners. The size and shape of the Fermi surface changes significantly with doping. Emergence of a coherent peak below the critical temperature Tc and diminished spectral weight at the chemical potential above Tc closely resembles the spectral characteristics of the cuprates, however the nodeless superconducting gap clearly excludes the possibility of d-wave order parameter. Instead it points to s-wave or extended s-wave symmetry of the order parameter.  相似文献   

17.
We perform first-principle phonon calculations for three typical iron-based superconductors, i.e., LaFeAsO,BaFe2As2, and FeSe. Though those crystals have different structures, we find that the optical modes associated with Fe vibration have almost similar characters. Moreover, we examine the pressure effect on phonons in FeSe. By increasing the external pressure, the phonon mode frequency related to Fe vibration effectively rises up and the electronic density of states at Fermi level also increases. These results may correlate to the critical temperature enhancement under high pressure.  相似文献   

18.
Tunneling differential conductivity (or resistivity) is a sensitive tool to experimentally test the non-Fermi liquid behavior of strongly correlated Fermi systems. In the case of common metals the Landau–Fermi liquid theory demonstrates that the differential conductivity is a symmetric function of bias voltage V. This is because the particle–hole symmetry is conserved in the Landau–Fermi liquid state. When a strongly correlated Fermi system turns out to be near the topological fermion condensation quantum phase transition, its Landau–Fermi liquid properties disappear so that the particle–hole symmetry breaks making the differential tunneling conductivity to be asymmetric function of V. This asymmetry can be observed when a strongly correlated metal is in its normal, superconducting or pseudogap states. We show that the asymmetric part of the dynamic conductance does not depend on temperature provided that the metal is in its superconducting or pseudogap states. In normal state, the asymmetric part diminishes at rising temperatures. Under the application of magnetic field the metal transits to the Landau–Fermi liquid state and the differential tunneling conductivity becomes a symmetric function of V. These findings are in good agreement with recent experimental observations.  相似文献   

19.
We investigate the electronic structures and magnetic properties of Mn2ZnMg compound with Hg2CuTi-type structure using first-principles full-potential local orbital minimum basis calculations. Based on the analysis on the electronic structures, it is demonstrated that the compound is half-metallic antiferromagnet and the compound is favorable to form Hg2CuTi-type structure instead of the conventional L21 one. The complicated hybridization among the p and d states dominates mainly the origin of the gap. The Fermi level (EF) shifts slightly with the lattice parameter changed. Spin-orbit coupling hardly reduces the degree of spin polarization of the density of states at the Fermi level.  相似文献   

20.
Within the Theory of Finite Fermi Systems the gyromagnetic ratios g L ph of all low-lying phonons in 208Pb are calculated. The input data, i.e., single-particle energies, single-particle wavefunctions, and the ph interaction are derived from the Energy Density Functional by Fayans et al. For the 3 1 ? phonon which is the most collective state, the g L ph value is close to the prediction of the collective Bohr-Mottelson (BM) model. Gyromagnetic ratios of other phonons that are included in our calculations, two 5? states and six positive parity phonons, differ significantly from the BM model prediction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号