首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Ryjá?ek (1997) [6] defined a powerful closure operation on claw-free graphs G. Very recently, Ryjá?ek et al. (2010) [8] have developed the closure operation on claw-free graphs which preserves the (non)-existence of a 2-factor. In this paper, we introduce a closure operation on claw-free graphs that generalizes the above two closure operations. The closure of a graph is unique determined and the closure turns a claw-free graph into the line graph of a graph containing no cycle of length at most 5 and no cycles of length 6 satisfying a certain condition and no induced subgraph being isomorphic to the unique tree with a degree sequence 111133. We show that these closure operations on claw-free graphs all preserve the minimum number of components of an even factor. In particular, we show that a claw-free graph G has an even factor with at most k components if and only if (, respectively) has an even factor with at most k components. However, the closure operation does not preserve the (non)-existence of a 2-factor.  相似文献   

2.
In this article, we study cycle coverings and 2-factors of a claw-free graph and those of its closure, which has been defined by the first author (On a closure concept in claw-free graphs, J Combin Theory Ser B 70 (1997), 217–224). For a claw-free graph G and its closure cl(G), we prove: (1) V(G) is covered by k cycles in G if and only if V(cl(G)) is covered by k cycles of cl(G); and (2) G has a 2-factor with at most k components if and only if cl(G) has a 2-factor with at most k components. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 109–117, 1999  相似文献   

3.
In a previous paper we obtained an upper bound for the minimum number of components of a 2-factor in a claw-free graph. This bound is sharp in the sense that there exist infinitely many claw-free graphs for which the bound is tight. In this paper we extend these results by presenting a polynomial algorithm that constructs a 2-factor of a claw-free graph with minimum degree at least four whose number of components meets this bound. As a byproduct we show that the problem of obtaining a minimum 2-factor (if it exists) is polynomially solvable for a subclass of claw-free graphs. As another byproduct we give a short constructive proof for a result of Ryjá?ek, Saito and Schelp.  相似文献   

4.
Roman ?ada 《Discrete Mathematics》2008,308(23):5622-5631
We introduce a closure concept for a superclass of the class of claw-free graphs defined by a degree condition on end vertices of induced claws. We show that the closure of a graph is the line graph of a triangle-free graph, and that the closure operation preserves the length of a longest path and cycle. These results extend the closure concept for claw-free graphs introduced by Ryjá?ek.  相似文献   

5.
It is showed that every simple claw-free graph of minimum degree at least 3 in which every edge lies in a cycle of length at most 5 has a 2-factor.  相似文献   

6.
In this paper, we prove that if a claw-free graph G with minimum degree δ?4 has no maximal clique of two vertices, then G has a 2-factor with at most (|G|-1)/4 components. This upper bound is best possible. Additionally, we give a family of claw-free graphs with minimum degree δ?4 in which every 2-factor contains more than n/δ components.  相似文献   

7.
The circumference of a graph is the length of its longest cycles. Results of Jackson, and Jackson and Wormald, imply that the circumference of a 3-connected cubic n-vertex graph is Ω(n0.694), and the circumference of a 3-connected claw-free graph is Ω(n0.121). We generalize and improve the first result by showing that every 3-edge-connected graph with m edges has an Eulerian subgraph with Ω(m0.753) edges. We use this result together with the Ryjá?ek closure operation to improve the lower bound on the circumference of a 3-connected claw-free graph to Ω(n0.753). Our proofs imply polynomial time algorithms for finding large Eulerian subgraphs of 3-edge-connected graphs and long cycles in 3-connected claw-free graphs.  相似文献   

8.
An H1,{H2}-factor of a graph G is a spanning subgraph of G with exactly one component isomorphic to the graph H1 and all other components (if there are any) isomorphic to the graph H2. We completely characterise the class of connected almost claw-free graphs that have a P7,{P2}-factor, where P7 and P2 denote the paths on seven and two vertices, respectively. We apply this result to parallel knock-out schemes for almost claw-free graphs. These schemes proceed in rounds in each of which each surviving vertex eliminates one of its surviving neighbours. A graph is reducible if such a scheme eliminates every vertex in the graph. Using our characterisation, we are able to classify all reducible almost claw-free graphs, and we can show that every reducible almost claw-free graph is reducible in at most two rounds. This leads to a quadratic time algorithm for determining if an almost claw-free graph is reducible (which is a generalisation and improvement upon the previous strongest result that showed that there was a O(n5.376) time algorithm for claw-free graphs on n vertices).  相似文献   

9.
不包含2K_2的图是指不包含一对独立边作为导出子图的图.Kriesell证明了所有4连通的无爪图的线图是哈密顿连通的.本文证明了如果图G不包含2K_2并且不同构与K_2,P_3和双星图,那么线图L(G)是哈密顿图,进一步应用由Ryjá(?)ek引入的闭包的概念,给出了直径不超过2的2连通无爪图是哈密顿图这个定理的新的证明方法.  相似文献   

10.
若图G不含有同构于K1,3的导出子图,则称G为一个无爪图.令a和b是两个整数满足2≤a≤b.本文证明了若G是一个含有[a,b]因子的2连通无爪图,则G有一个连通的[a,b 1]因子.  相似文献   

11.
Akira Saito 《Discrete Mathematics》2009,309(16):5000-1723
We consider 2-factors with a bounded number of components in the n-times iterated line graph Ln(G). We first give a characterization of graph G such that Ln(G) has a 2-factor containing at most k components, based on the existence of a certain type of subgraph in G. This generalizes the main result of [L. Xiong, Z. Liu, Hamiltonian iterated line graphs, Discrete Math. 256 (2002) 407-422]. We use this result to show that the minimum number of components of 2-factors in the iterated line graphs Ln(G) is stable under the closure operation on a claw-free graph G. This extends results in [Z. Ryjá?ek, On a closure concept in claw-free graphs, J. Combin. Theory Ser. B 70 (1997) 217-224; Z. Ryjá?ek, A. Saito, R.H. Schelp, Closure, 2-factors and cycle coverings in claw-free graphs, J. Graph Theory 32 (1999) 109-117; L. Xiong, Z. Ryjá?ek, H.J. Broersma, On stability of the hamiltonian index under contractions and closures, J. Graph Theory 49 (2005) 104-115].  相似文献   

12.
Some known results on claw-free graphs are generalized to the larger class of almost claw-free graphs. In this paper, we prove several properties on longest cycles in almost claw-free graphs. In particular, we show the following two results.? (1) Every 2-connected almost claw-free graph on n vertices contains a cycle of length at least min {n, 2δ+4} and the bound 2δ+ 4 is best possible, thereby fully generalizing a result of Matthews and Sumner.? (2) Every 3-connected almost claw-free graph on n vertices contains a cycle of length at least min {n, 4δ}, thereby fully generalizing a result of MingChu Li. Received: September 17, 1996 Revised: September 22, 1998  相似文献   

13.
《Discrete Mathematics》2020,343(7):111904
An even cycle decomposition of a graph is a partition of its edges into cycles of even length. In 2012, Markström conjectured that the line graph of every 2-connected cubic graph has an even cycle decomposition and proved this conjecture for cubic graphs with oddness at most 2. However, for 2-connected cubic graphs with oddness 2, Markström only considered these graphs with a chordless 2-factor. (A chordless 2-factor of a graph is a 2-factor consisting of only induced cycles.) In this paper, we first construct an infinite family of 2-connected cubic graphs with oddness 2 and without chordless 2-factors. We then give a complete proof of Markström’s result and further prove this conjecture for cubic graphs with oddness 4.  相似文献   

14.
A graph is Hamiltonian if it contains a cycle which goes through all vertices exactly once. Determining if a graph is Hamiltonian is known as an NP-complete problem, and no satisfactory characterization for these graphs has been found.In 1976, Bondy and Chvàtal introduced a way to get round the Hamiltonicity problem complexity by using a closure of the graph. This closure is a supergraph of G which is Hamiltonian iff G is. In particular, if the closure is the complete graph, then G is Hamiltonian. Since this seminal work, several closure concepts preserving Hamiltonicity have been introduced. In particular, in 1997, Ryjá?ek defined a closure concept for claw-free graphs based on local completion.Following a different approach, in 1974, Goodman and Hedetniemi gave a sufficient condition for Hamiltonicity based on the existence of a clique covering of the graph. This condition was recently generalized using the notion of Eulerian clique covering. In this context, closure concepts based on local completion are interesting since the closure of a graph contains more simplicial vertices than the graph itself, making the search for a clique covering easier.In this article, we introduce a new closure concept based on local completion which preserves the Hamiltonicity for every graph. Note that, moreover, the closure may be claw free even when the graph is not.  相似文献   

15.
A graph is called claw-free if it contains no induced subgraph isomorphic to K1,3. Matthews and Sumner proved that a 2-connected claw-free graph G is Hamiltonian if every vertex of it has degree at least (|V(G)|-2)/3. At the workshop C&C (Novy Smokovec, 1993), Broersma conjectured the degree condition of this result can be restricted only to end-vertices of induced copies of N (the graph obtained from a triangle by adding three disjoint pendant edges). Fujisawa and Yamashita showed that the degree condition of Matthews and Sumner can be restricted only to end-vertices of induced copies of Z1 (the graph obtained from a triangle by adding one pendant edge). Our main result in this paper is a characterization of all graphs H such that a 2-connected claw-free graph G is Hamiltonian if each end-vertex of every induced copy of H in G has degree at least |V(G)|/3+1. This gives an affirmative solution of the conjecture of Broersma up to an additive constant.  相似文献   

16.
We say that G is almost claw-free if the vertices that are centers of induced claws (K1,3) in G are independent and their neighborhoods are 2-dominated. Clearly, every claw-free graph is almost claw-free. It is shown that (i) every even connected almost claw-free graph has a perfect matching and (ii) every nontrivial locally connected K1,4-free almost claw-free graph is fully cycle extendable.  相似文献   

17.
A connected even [2,2s]-factor of a graph G is a connected factor with all vertices of degree i (i=2,4,…,2s), where s?1 is an integer. In this paper, we show that every supereulerian K1,s-free graph (s?2) contains a connected even [2,2s-2]-factor, hereby generalizing the result that every 4-connected claw-free graph has a connected [2,4]-factor by Broersma, Kriesell and Ryjacek.  相似文献   

18.
Let k be a non-negative integer. A branch vertex of a tree is a vertex of degree at least three. We show two sufficient conditions for a connected claw-free graph to have a spanning tree with a bounded number of branch vertices: (i) A connected claw-free graph has a spanning tree with at most k branch vertices if its independence number is at most 2k + 2. (ii) A connected claw-free graph of order n has a spanning tree with at most one branch vertex if the degree sum of any five independent vertices is at least n ? 2. These conditions are best possible. A related conjecture also is proposed.  相似文献   

19.
A graph is equimatchable if all of its maximal matchings have the same size. A graph is claw-free if it does not have a claw as an induced subgraph. In this paper, we provide the first characterization of claw-free equimatchable graphs by identifying the equimatchable claw-free graph families. This characterization implies an efficient recognition algorithm.  相似文献   

20.
A graph is said to be unicolored if it is colored by nonnegative integers so that adjacent points have colors that differ in absolute value by one. A unicolored graph is collapsible if it has a 1-factor that does not contain a 1-factor of any bicolored cycle. We show that a regular CW complex K cell collapses to a subcomplex O if and only if its relative unicolored incidence graph collapses. We consider the 1-factors and the bicolored cycles of unicolored incidence graphs and their relationship to the relative homology and homotopy properties of the pair of cell complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号