首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Tetrahedron: Asymmetry》2007,18(15):1877-1882
Cationic iridium complexes based on enantiomerically pure tetrathiafulvalene–oxazoline ligands have been used in the asymmetric hydrogenation of N-(phenylethylidene)aniline. Complete conversions with ee’s up to 68% could be reached in the case of the TTF–phosphinooxazoline (TTF–PHOX) ligands.  相似文献   

2.
New C(60)-based triads, constituted by a fulleropyrrolidine moiety and two different electroactive units [donor 1-donor 2 (10, 15a,b), or donor 1-acceptor (17, 21)], have been synthesized by 1,3-dipolar cycloaddition reaction of azomethyne ylides to C(60) and further acylation reaction on the pyrrolidine nitrogen. The electrochemical study reveals some electronic interaction between the redox-active chromophores. Triads bearing tetrathiafulvalene (TTF) and ferrocene (Fc) (10) or pi-extended TTFs and Fc (15a,b) show reduction potentials for the C(60) moiety which are cathodically shifted in comparison to the parent C(60). In contrast, triads endowed with Fc and anthraquinone (AQ) (17) or Fc and tetracyanoanthraquinodimethane (TCAQ) (21) present reduction potentials for the C(60) moiety similar to C(60). Fluorescence experiments and time-resolved transient absorption spectroscopy reveal intramolecular electron transfer (ET) processes from the stronger electron donor (i.e., TTF or extended TTF) to the fullerene singlet excited state, rather than from the poorer ferrocene donor in 10, 15a,b. No evidence for a subsequent ET from ferrocene to TTF(*)(+) or pi-extended TTF(*)(+) was observed.  相似文献   

3.
Oxygen reduction at the polarized water/1,2-dichloroethane (DCE) interface catalyzed by a Cu (II) coordination polymer (Cu–pol) was studied with two lipophilic electron donors ferrocene (Fc) and tetrathiafulvalene (TTF). The results of the ion transfer voltammetry and two-phase shake flask experiments suggest proceeding of the catalytic reaction as proton-coupled electron transfer reduction of oxygen to hydrogen peroxide and water. In this process, while the protons supplied from the aqueous phase, the electrons provided from the organic phase by the weak electron donor, Fc. The O2 molecule takes a superoxide structure with Cu–pol which resulted to hydrogen peroxide or water on reduction. Furthermore, the results revealed that the apparent rate constant of TTF + Cu-pol is higher than that of Fc + Cu-pol system due to the faster kinetic reaction of TTF with respect to Fc.  相似文献   

4.
Novel bidentate electroactive ligands containing one or two tetrathiafulvalene (TTF) cores as redox active unit have been synthesized thanks to the condensation of various carbonyl derivatives with TTF hydrazone. The electron donating ability of these redox active ligands determined by cyclic voltammetry is described together with the investigations of their molecular structures by X-ray diffraction studies. The chelating ability of these ligands has been exemplified through the coordination to molybdenum carbonyl fragment or the complexation to difluoroboron moiety.  相似文献   

5.
The last decade has witnessed many advances in the coordination chemistry of tetrathiafulvalene (TTF). Various ligands, in which a metal-binding functionality is attached to the TTF unit, have been synthesized and used for the preparation of metal complexes. This Perspective summarizes the main types of TTF-containing ligands and their metal complexes and outlines the potential for the use of these building blocks in the design and assembly of multifunctional molecular materials.  相似文献   

6.
New chiral redox active ligands based on ethylenedithio-tetrathiafulvalene (EDT-TTF) bearing racemic or optically pure oxazolines have been synthesised. These auxiliaries possess an additional functionality on the TTF unit, namely a thiomethyl residue or a diphenylphosphino moiety. All ligands have been tested in asymmetric allylic substitutions. The enantioselectivity reached is 85% ee.  相似文献   

7.
四硫富瓦烯(TTF)衍生物的配位组装   总被引:6,自引:0,他引:6  
四硫富瓦烯(tetratiafulvalenc,TTF)衍生物和二硫纶(dithiolene)化合行等有机富硫分子作为有机光电磁的功能化合物,一直受到了人们的重视,近年来一类融合了TTF和二硫纶结构的扩展TTF衍生物引起人们很大的兴趣,这类八硫共轭体系具有较好的电子授受特性,展示出潜在的应用价值。有目的地利用它与与金属离子间较强的配位能力对这些化合物进行晶体或分子设计已成为配位化学在富硫有机配合物研究中的一个热点。本文重点介绍这方面的研究的最新进展。主要包括以卤化亚铜基本骨架为基础的四烷基硫取代四硫富瓦烯([(RS)2TTF(SR)2])的配位组装;二烷基硫取代的TTF融合二硫纶离子([(RS)2TTF(S2)]^2-)和TTF融合双二硫纶离子([(S)2TTF(S)]^4-金属配位衍生物的分子设计和空间构筑。通过配位修饰或组装,这类TTF金属衍生物显示了多变的结构,有的已发展具有较好的物理性质。  相似文献   

8.
Novel chiral ferrocenylthiophosphine–sulfoxide and phosphine–sulfoxide derivatives possessing planar chirality for the ferrocene moiety and central chirality at the sulfur atom have been synthesized. These ligands can be obtained as pure diastereoisomers in both racemic and enantiomerically pure forms. Complete characterization by XRD analysis has allowed the assignment of the absolute configuration in each case. Preliminary coordination studies of the phosphine–sulfoxide ligands on platinum are also reported. These show chelating complexation by the phosphorous and sulfur atoms.  相似文献   

9.
The reaction of tris(alkylthio)tetrathiafulvalene thiolates with 3-chloro-2,4-pentanedione affords tetrathiafulvalene (TTF) moieties substituted by the acetylacetone function (TTFSacacH), precursors of novel redox-active ligands: the acetylacetonate ions (TTFSacac). These TTFSacacHs have been characterized by X-ray diffraction analyses, and similar trends have been observed, such as a TTF core almost planar and the acetylacetone substituent located in a plane almost perpendicular to the plane formed by the TTF core. Their chelating ability has been demonstrated by the formation of the corresponding M(TTFSacac)2(pyridine)2 complexes in the presence of M(II)(OAc)2.H2O (M = Ni2+, Zn2+). These complexes with TTFSacac moieties, Ni(TTFSacac)2(pyridine)2, 6b, and Zn(TTFSacac)2(pyridine)2, 7b, have been characterized by X-ray diffraction analyses, showing in all structures the metal(II) center chelated by two TTFacac units in the equatorial plane and the octahedral coordination geometry around the metal completed by two axial pyridine ligands. Cyclic voltammetry and UV-visible-near infrared spectroscopic measurements have evidenced a sizable interaction between the two electroactive ligands and the stabilization of a mixed-valence state in the one-electron oxidized complexes.  相似文献   

10.
Chiral ligands play an important role in asymmetric synthesis. Among them the ligands having planar chirality attract more interesting of organic chemists because of their unique structure. Recently, some new types of planar chiral ligands, including 1,1'-disubstituted ferrocene 1, bis(ferrocene carboxylic)diaminocyclohexane 2, and benzylic substituted cyclophane 3, are synthesized (Scheme 1)[1]. These chiral ligands have been successfully used in asymmetric allylic alkylation, Heck reaction, etc. The role of planar chirality in asymmetric induction by using NMR and X-ray are also studied.  相似文献   

11.
The synthesis of new hybrid ferrocene and pi-extended tetrathiafulvalene (TTF) donor(1)-pi-donor(2) molecular assemblies 16a-c has been carried out by a Wittig-Horner reaction of the respective phosphonate esters 15a-c with 2-(2-ferrocenylvinyl)-9, 10-anthraquinone (18) prepared by olefination of ferrocenecarboxaldehyde (14) and the anthraquinone phosphonium salt 17. Electrochemical studies show that the D(1)-pi-D(2) (D = donor) molecular assemblies 16a-c essentially retain the redox characteristics of both ferrocene and the pi-extended TTF components and the effects of solvent, temperature, scan rate, and working electrode are significant. Most importantly, pronounced intramolecular electronic interactions between the two donor moieties were observed by cyclic voltammetry and Osteryoung square wave voltammetry in both the ground and charged states. Semiempirical calculations support the electrochemical observations.  相似文献   

12.
The activation of tris(dimethylamino)borane towards reaction with a chiral methimazole by N-methylimidazole has been used to prepare the first example of a chiral tris(methimazolyl)borate ligand. Coordination of this neutral ligand to Ru(II) has been achieved by reaction with [(p-cymene)RuCl(2)](2) to provide a single diastereomer complex in which the chirality of the methimazolyl substituents dictate the chirality of the bicyclo[3.3.3]cage formed by the ligand on coordination to the metal. The alternative approach to chiral tris(methimazolyl)borate ligands involving the introduction of a chiral group onto the boron atom has been explored by replacing N-methylimidazole in the above reaction by chiral oxazolines as activating bases in reaction with simple methimazole. However, although the B(NMe(2))(3) is activated to reaction with methimazole by these oxazolines, an intramolecular oxazoline ring-opening by a coordinated methimazolyl sulfur occurs and prevents the successful synthesis of these ligands.  相似文献   

13.
A series of redox-responsive ligands that associate the electroactive tetrathiafulvalene core with polyether subunits of various lengths has been synthesized. X-ray structures are provided for each of the free ligands. The requisite structural criteria for reaching switchable ligands are satisfied for the largest macrocycles, that is, planarity of the 1,1',3,3'-tetrathiafulvalene (TTF) pi system and correctly oriented coordinating atoms. The ability of these ligands to recognize various metal cations as a function of the cavity size has been investigated by various techniques (LSIMS, 1H NMR, and UV/Vis spectroscopy, cyclic voltammetry). These systems exhibit an unprecedented high coordination ability among TTF crown ethers. Their switchable ligating properties have been confirmed by cyclic voltammetry, and metal-cation complexation has been illustrated by X-ray structures of three of the corresponding metal complexes (Pb2+, Sr2+, and Ba2+). Solid-state structures of these complexes display original packing modes with channel-like arrangements.  相似文献   

14.
[reaction: see text] The pyridineethenyl-substituted tetrathiafulvalene (TTF) compounds, 4-(4-pyridineethenyl)tetrathiafulvalene (1a) and 4,4'(5')-[bis-(4-pyridineethenyl)]tetrathiafulvalene (2a) together with the styryl-substituted TTF compounds, 4-styryltetrathiafulvalene (1b) and 4,4'(5')-bis-styryltetrathiafulvalene (2b), have been designed and synthesized. All these compounds exhibit strong absorption bands in the range of 370 to 550 nm, which are assigned to the intramolecular charge-transfer transition from the HOMO in TTF to the LUMO in the pyridyl or phenyl group. Compared to compounds 1b and 2b, the pyridineethenyl-substituted TTF compounds 1a and 2a show remarkable sensing and coordinating properties to Pb2+. With the addition of micromolar concentrations of Pb2+ to the solution, 1a or 2a displays dramatic changes in the UV-vis absorption spectrum, 1H NMR spectrum, and redox property.  相似文献   

15.
Porous crystals are excellent materials with potential spatial functions through molecular encapsulation within the pores. Co‐encapsulation of multiple different molecules further expands their usability and designability. Herein we report the simultaneous arrangement of up to three different guest molecules, TTF (tetrathiafulvalene), ferrocene, and fluorene, on the pore surfaces of a porous crystalline metal–macrocycle framework (MMF). The position and orientation of adsorbed molecules arranged in the pore were determined by single‐crystal X‐ray diffraction analysis. The anchoring effect of hydrogen bonds between the hydroxy groups of the guest molecules and inter‐guest cooperation and competition are significant factors in the adsorption behaviors of the guest molecules. This finding would serve as a design basis of multicomponent functionalized nanospaces for elaborate reactions that are realized in enzymes.  相似文献   

16.
A series of tetrathiafulvalene (TTF)‐annulated porphyrins, and their corresponding ZnII complexes, have been synthesized. Detailed electrochemical, photophysical, and theoretical studies reveal the effects of intramolecular charge‐transfer transitions that originate from the TTF fragments to the macrocyclic core. The incremental synthetic addition of TTF moieties to the porphyrin core makes the species more susceptible to these charge‐transfer (CT) effects as evidenced by spectroscopic studies. On the other hand, regular positive shifts in the reduction signals are seen in the square‐wave voltammograms as the number of TTF subunits increases. Structural studies that involve the tetrakis‐substituted TTF–porphyrin (both free‐base and ZnII complex) reveal only modest deviations from planarity. The effect of TTF substitution is thus ascribed to electronic overlap between annulated TTF subunits rather than steric effects. The directly linked thiafulvalene subunits function as both π acceptors as well as σ donors. Whereas σ donation accounts for the substituent‐dependent charge‐transfer transitions, it is the π‐acceptor nature of the appended tetrathiafulvalene groups that dominates the redox chemistry. Interactions between the subunits are also reflected in the square‐wave voltammograms. In the case of the free‐base derivatives that bear multiple TTF subunits, the neighboring TTF units, as well as the TTF ? + generated through one‐electron oxidation, can interact with each other; this gives rise to multiple signals in the square‐wave voltammograms. On the other hand, after metalation, the electronic communication between the separate TTF moieties becomes restricted and they act as separate redox centers under conditions of oxidation. Thus only two signals, which correspond to TTF . + and TTF2+, are observed. The reduction potentials are also seen to shift towards more negative values after metalation, a finding that is considered to reflect an increased HOMO–LUMO gap. To probe the excited‐state dynamics and internal CT character, transient absorption spectral studies were performed. These analyses revealed that all the TTF–porphyrins of this study display relatively short excited‐state lifetimes, which range from 1 to 20 ps. This reflects a very fast decay to the ground state and is consistent with the proposed intramolecular charge‐transfer effects inferred from the ground‐state studies. Complementary DFT calculations provide a mechanistic rationale for the electron flow within the TTF–porphyrins and support the proposed intramolecular charge‐transfer interactions and π‐acceptor effects.  相似文献   

17.
A cyclophane incorporating one 1,5-dioxynaphthalene ring system and one tetrathiafulvalene (TTF) unit bridged by [SCH(2)CH(2)O] linkages has been synthesized. In this cyclophane, the TTF unit can adopt either cis or trans configurations. In addition, the 1, 5-dioxynaphthalene ring system imposes one element of planar chirality on this cyclophane. A second element of planar chirality is introduced by the trans form of the TTF unit. Thus, the cyclophane exists in diastereoisomeric forms as three pairs of enantiomers. The enantiomeric pairs associated with the cis form of the TTF unit, as well as one of those associated with the trans form, have been isolated by crystallization, and their structures assigned in the solid state by single-crystal X-ray analyses. In solution, cis/trans isomerization occurs when either the cis or the trans form of the cyclophane is exposed to light. The photoisomerization reaction can be followed by (1)H NMR and UV-vis spectroscopies, as well as by HPLC. The photoisomerization quantum yield has been measured at two different excitation wavelengths (406 and 313 nm). In both cases, the trans --> cis process (Phi = 0.20 at 406 nm) is much more efficient than the reverse cis --> trans process (Phi = 0.030 at 406 nm). Since the absorption spectra of the trans and cis isomers are different and the quantum yield of the trans --> cis photoisomerization reaction depends on the excitation wavelength, the mole fraction of the two diastereoisomers present at the photostationary state depends on the wavelength of the exciting light. No isomerization occurs when the solutions, regardless of the mole fraction of the two diastereoisomers, are stored in the dark.  相似文献   

18.
四硫富瓦烯及其衍生物是性能优良的电子给体.本文利用Sonogashira反应将吡啶基团连接在四硫富瓦烯单元上,合成了"A-C≡C-TTF-C≡C-A"型四硫富瓦烯共轭体系衍生物4,4′(5′)-二-(4-吡啶乙炔基)-四硫富瓦烯(TTF4N).吸收光谱、电化学和Pb2+配位键合研究表明,三键作为桥基能够有效实现分子内的电荷转移.金属Pb2+离子与吡啶基团的配位能够引起TTF4N的吸收光谱、核磁氢谱和电化学性质的显著变化.  相似文献   

19.
The design and synthesis of Aviram–Ratner‐type molecular rectifiers, featuring an anilino‐substituted extended tetracyanoquinodimethane (exTCNQ) acceptor, covalently linked by the σ‐spacer bicyclo[2.2.2]octane (BCO) to a tetrathiafulvalene (TTF) donor moiety, are described. The rigid BCO spacer keeps the TTF donor and exTCNQ acceptor moieties apart, as demonstrated by X‐ray analysis. The photophysical properties of the TTF‐BCO‐exTCNQ dyads were investigated by UV/Vis and EPR spectroscopy, electrochemical studies, and theoretical calculations. Langmuir–Blodgett films were prepared and used in the fabrication and electrical studies of junction devices. One dyad showed the asymmetric current–voltage (I–V) curve characteristic for rectification, unlike control compounds containing the TTF unit but not the exTCNQ moiety or comprising the exTCNQ acceptor moiety but lacking the donor TTF part, which both gave symmetric I–V curves. The direction of the observed rectification indicated that the preferred electron current flows from the exTCNQ acceptor to the TTF donor.  相似文献   

20.
The template-directed synthesis of a bistable tripodal [4]rotaxane, which has cyclobis(paraquat-p-phenylene) (CBPQT4+) as the pi-electron-deficient rings, and tetrathiafulvalene (TTF) and 1,5-dioxynaphthalene units as the pairs of pi-electron-rich recognition sites located on all three legs of the tripodal dumbbell, is described. The chemical and electrochemical oxidation of the [4]rotaxane and its tripodal dumbbell have allowed us to unravel an unprecedented TTF.+ radical cation dimerization. In fact, two types of TTF dimers, namely, the radical cation dimer [TTF.+]2 and the mixed-valence one [(TTF)2].+, have been observed at room temperature for the tripodal dumbbell, whereas, in the case of the [4]rotaxane, only the radical cation dimer [TTF.+]2 is formed. This anomaly can be explained if it is accepted that most of the neutral TTF units in the [4]rotaxane are encircled by CBPQT4+ rings, which renders the formation of the mixed-valence dimer [(TTF)2].+ highly unfavorable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号