首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Kenta Ozeki 《Discrete Mathematics》2009,309(13):4266-4269
Win, in 1975, and Jackson and Wormald, in 1990, found the best sufficient conditions on the degree sum of a graph to guarantee the properties of “having a k-tree” and “having a k-walk”, respectively. The property of “being prism hamiltonian” is an intermediate property between “having a 2-tree” and “having a 2-walk”. Thus, it is natural to ask what is the best degree sum condition for graphs to be prism hamiltonian. As an answer to this problem, in this paper, we show that a connected graph G of order n with σ3(G)≥n is prism hamiltonian. The degree sum condition “σ3(G)≥n” is best possible.  相似文献   

2.
For a graph G, we denote by dG(x) and κ(G) the degree of a vertex x in G and the connectivity of G, respectively. In this article, we show that if G is a 3‐connected graph of order n such that dG(x) + dG(y) + dG(z) ≥ d for every independent set {x, y, z}, then G contains a cycle of length at least min{d ? κ(G), n}. © 2006 Wiley Periodicals, Inc. J Graph Theory 54: 277–283, 2007  相似文献   

3.
Let G be a (k+m)-connected graph and F be a linear forest in G such that |E(F)|=m and F has at most k-2 components of order 1, where k?2 and m?0. In this paper, we prove that if every independent set S of G with |S|=k+1 contains two vertices whose degree sum is at least d, then G has a cycle C of length at least min{d-m,|V(G)|} which contains all the vertices and edges of F.  相似文献   

4.
5.
A graph G satisfies the Ore-condition if d(x) + d(y) ≥ | V (G) | for any xy ■ E(G). Luo et al. [European J. Combin., 2008] characterized the simple Z3-connected graphs satisfying the Ore-condition. In this paper, we characterize the simple Z3-connected graphs G satisfying d(x) + d(y) ≥ | V (G) |-1 for any xy ■ E(G), which improves the results of Luo et al.  相似文献   

6.
7.
8.
9.
We show that every sufficiently large oriented graph G with+(G), (G)(3n–4)/8 contains a Hamilton cycle. Thisis best possible and solves a problem of Thomassen from 1979.  相似文献   

10.
11.
We consider graphs, which are finite, undirected, without loops and in which multiple edges are possible. For each natural numberk letg(k) be the smallest natural numbern, so that the following holds:LetG be ann-edge-connected graph and lets 1,...,s k,t 1,...,t k be vertices ofG. Then for everyi {1,..., k} there existsa pathP i froms i tot i, so thatP 1,...,P k are pairwise edge-disjoint. We prove   相似文献   

12.
A total k-coloring of a graph G is a coloring of V(G) ∪ E(G) using k colors such that no two adjacent or incident elements receive the same color. The total chromatic number χ'(G) is the smallest integer k such that G has a total k-coloring. It is known that if a planar graph G has maximum degree Δ≥ 9, then χ'(G) = Δ + 1. In this paper, we prove that if G is a planar graph with maximum degree 8 and without a fan of four adjacent 3-cycles, then χ'(G) = 9.  相似文献   

13.
Let G be a graph of sufficiently large order n, and let the largest eigenvalue μ(G) of its adjacency matrix satisfies . Then G contains a cycle of length t for every t?n/320This condition is sharp: the complete bipartite graph T2(n) with parts of size n/2 and n/2 contains no odd cycles and its largest eigenvalue is equal to .This condition is stable: if μ(G) is close to and G fails to contain a cycle of length t for some t?n/321, then G resembles T2(n).  相似文献   

14.
The total chromatic number of a graph G, denoted by χ(G), is the minimum number of colors needed to color the vertices and edges of G such that no two adjacent or incident elements get the same color. It is known that if a planar graph G has maximum degree Δ≥9, then χ(G)=Δ+1. In this paper, we prove that if G is a planar graph with maximum degree 7, and for every vertex v, there is an integer kv∈{3,4,5,6} so that v is not incident with any kv-cycle, then χ(G)=8.  相似文献   

15.
Let G be a balanced bipartite graph of order 2n4, and let σ1,1(G) be the minimum degree sum of two non-adjacent vertices in different partite sets of G. In 1963, Moon and Moser proved that if σ1,1(G)n+1, then G is hamiltonian. In this note, we show that if k is a positive integer, then the Moon–Moser condition also implies the existence of a 2-factor with exactly k cycles for sufficiently large graphs. In order to prove this, we also give a σ1,1 condition for the existence of k vertex-disjoint alternating cycles with respect to a chosen perfect matching in G.  相似文献   

16.
The main results of the paper are that we give a necessary and sufficient condition for a surface sum of two handlebodies along a connected surface to be a handlebody as follows:(1) The annulus sum H = H_1∪_AH_2 of two handlebodies H_1 and H_2 is a handlebody if and only if the core curve of A is a longitude for either H_1 or H_2;(2) Let H = H_1 ∪S_(g,b) H_2 be a surface sum of two handlebodies H_1 and H_2 along a connected surface S = S_(g,b), b 1, n_i = g(H_i) 2, i = 1, 2. Suppose that S is incompressible in both H_1 and H_2. Then H is a handlebody if and only if there exists a basis J = {J_1,..., J_m} with a partition(J_1, J_2) of J such that J_1 is primitive in H_1 and J_2 is primitive in H_2.  相似文献   

17.
The total chromatic number χT(G) of graph G is the least number of colors assigned to V(G) ∪ E(G) such that no adjacent or incident elements receive the same color. In this article, we give a sufficient condition for a bipartite graph G to have χT(G) = Δ(G) + 1. © 1998 John Wiley & Sons, Inc. J. Graph Theory 29: 133–137, 1998  相似文献   

18.
For a graph G, we denote by p(G) and c(G) the number of vertices of a longest path and a longest cycle in G, respectively. For a vertex v in G, id(v) denotes the implicit degree of v. In this paper, we obtain that if G is a 2-connected graph on n vertices such that the implicit degree sum of any three independent vertices is at least n + 1, then either G contains a hamiltonian path, or c(G) ≥ p(G) ? 1.  相似文献   

19.
20.
Let G be a graph. For SV(G), let Δk(S) denote the maximum value of the degree sums of the subsets of S of order k. In this paper, we prove the following two results. (1) Let G be a 2-connected graph. If Δ2(S)≥d for every independent set S of order κ(G)+1, then G has a cycle of length at least min{d,|V(G)|}. (2) Let G be a 2-connected graph and X a subset of V(G). If Δ2(S)≥|V(G)| for every independent set S of order κ(X)+1 in G[X], then G has a cycle that includes every vertex of X. This suggests that the degree sum of nonadjacent two vertices is important for guaranteeing the existence of these cycles.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号