首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
In this article we reconsider the discussion of the magnetic measurements for the two novel polyoxotungstates, (n-BuNH(3))(12)[(CuCl)(6)(AsW(9)O(33))(2)].6H(2)O and (n-BuNH(3))(12)[(MnCl)(6)(SbW(9)O(33))(2)].6H(2)O, which have been synthesized and characterized by Yamase et al. (Inorg.Chem. 2006, 45, 7698). Analysis of the magnetic susceptibility and magnetization for Cu(6)(12+) and Mn(6)(12+) hexagons based on the exact diagonalization of isotropic exchange Hamiltonian shows that the best-fit first-neighbor coupling parameters are J = 35 and 0.55 cm(-1), respectively, while the second-neighbor interactions are very small. These values exceed considerably those obtained by Yamase et al. (J = 8.82 and 0.14 cm(-1)) on the basis of the Kambe-Van Vleck formula that is inappropriate for six-membered rings. We also got perfect fits to the experimental data for the field dependence of magnetization at 1.8 K. The results imply the importance of axial anisotropy, which is shown to be especially pronounced for the Mn(6)(12+) cluster. We discuss also the symmetry assignments of exchange multiplets to the exact SGamma terms (full spin, S, and irreducible representation, Gamma, of the point group) and correlate the results with the selection rules for the anisotropic magnetic contributions. The antisymmetric exchange is shown to appear in orbitally degenerate multiplets as a first-order perturbation and gives rise to an easy axis of magnetization along the C(6) axis. Evaluation of the Zeeman levels shows that the field applied in the plane of the hexagon fully reduces the effect of the antisymmetric exchange.  相似文献   

2.
The use of phenyl 2-pyridyl ketoxime (PhPyCNO)/X(-)"blends" (X(-) = OH(-), Cl(-), ClO(4)(-)) in copper chemistry has yielded trinuclear clusters that have been characterized as inverse-9-metallacrown-3 accommodating one or two anions. The magnetic behaviour has shown a large antiferromagnetic interaction. The discrepancy between the Brillouin curve and the experiment has been assigned to the influence of the antisymmetric interaction. By introducing in the magnetization formula the antisymmetric terms derived from the fitting of the susceptibility data the simulated curve become almost superimposable to the experimental one. From the EPR findings it has been shown that the compound [Cu(3)(PhPyCNO)(3)(OCH(3))(Cl)(ClO(4))] () having isosceles magnetic symmetry or lower (delta not equal 0), the antisymmetric exchange is important (G not equal 0) and DeltaE > hv. The structures of the two complexes have been determined by single-crystal X-ray crystallography.  相似文献   

3.
In this article, the low-temperature static (adiabatic) magnetization data of the nanoscopic V15 cluster present in K6[VIV15As6O42(H2O)] x 8H2O is analyzed. The cluster anion, which attracted much attention in the past, contains a triangular VIV3 array causing frustration as a function of applied field and temperature. In the analysis, a three-spin (S = 1/2) model of V15 was employed that includes isotropic antiferromagnetic exchange interaction and antisymmetric (AS) exchange in the most general form compatible with the trigonal symmetry of the system. It was shown that, along with the absolute value of AS exchange, the orientation of the AS vector plays a significant physical role in spin-frustrated systems. In this context, the role of the different components of the AS in the low-temperature magnetic behavior of V15 was analyzed, and we were able to reach a perfect fit to the experimental data on the staircaselike dependence of magnetization versus field in the whole temperature range including extremely low temperature. Furthermore, it was possible for the first time to precisely estimate the two components of the AS vector coupling constant in a triangular unit, namely, the effective in-plane component, Dperpendicular, and the perpendicular part, Dn.  相似文献   

4.
5.
Low-energy excitation energies of a magnetic solid with localized spins are probed by magnetic susceptibility, neutron scattering and Raman scattering measurements, and are analyzed using a spin Hamiltonian with a set of spin exchange parameters. The nature and values of the spin exchange parameters deduced from this analysis depend on what spin exchange paths one includes in the spin Hamiltonian. In this article, we review how spin exchange interactions of magnetic solids with localized spins are described on formal, quantitative and qualitative theoretical levels, investigate antisymmetric and anisotropic interactions for general spin dimers, and discuss the spin exchange interactions and magnetic structures of various extended magnetic solids on the basis of spin dimer analysis. Strongly interacting spin exchange paths of a magnetic solid are determined by the overlap between its magnetic orbitals, so that the strongly interacting spin unit of a magnetic solid does not necessarily have the same geometrical feature as does the arrangement of its magnetic ions or spin-carrying molecules. Therefore, in interpreting results of magnetic susceptibility, inelastic neutron scattering or Raman scattering measurements, it is essential to employ a set of spin exchange parameters chosen on the basis of proper electronic structure considerations. Spin dimer analyses based on extended Hückel tight binding calculations provide a reliable and expedient means to study the relative strengths of superexchange and super-superexchange spin exchange interactions.  相似文献   

6.
We present an introduction to the workings, units of measure, and general properties of magnetic materials. This is intended as a “primer to interpretation of magnetic data” for those who are entering the field, or those who are encountering magnetic measurements in the literature. We expect this work will serve as an initial guide to the reader to familiarize them with the basics in the hope that those working in the field of magnetochemistry will wish to explore additional, more detailed literature as their specific investigations demand. Topics covered include: magnetic fields and units (SI and cgs), paramagnetism (magnetization and magnetic susceptibility), Curie and Curie–Weiss behavior, magnetic exchange interactions, magnetic anisotropy, dimeric systems and exchange-coupled networks (including chains, ladders, and layers), and long-range order.  相似文献   

7.
We report molecular structures and temperature-dependent magnetic susceptibility data for several new metal complexes of heterospin triplet ground-state biradical ligands. The ligands are comprised of both nitronyl-nitroxide (NN) and semiquinone (SQ) spin carriers. Five compounds are five-coordinate M(II) complexes (M = Mn, Co, Ni, Cu, and Zn), and one is a six-coordinate Ni(II) complex. Five compounds were structurally characterized. During copper complex formation a reaction with methanol occurs to form a unique methoxy-substituted SQ ring. Variable-temperature magnetic susceptibility studies are consistent with strong intraligand (NN-SQ and NN-PhSQ) ferromagnetic exchange coupling. For the five-coordinate Mn, Co, and Ni complexes, the S = 1 ligand is antiferromagnetically coupled to the metal. For both the five-coordinate Cu complex and the six-coordinate Ni complex, the ligand is ferromagnetically coupled to the metal spins in accordance with orbital symmetry arguments. Despite the low molecular symmetries, the predicted trend in metal-ligand exchange interactions is supported by spin dimer analysis based on extended Hückel calculations. For (NN-SQ)NiTp(Cum,Me)() (Tp(Cum,Me)() = hydro-tris(3-cumenyl-5-methylpyrazolyl)borate), an antisymmetric exchange term was required for the best fit of the magnetic susceptibility data. Antisymmetric exchange was less important for the other complexes due to inherently smaller Deltag. Finally, it is shown that intraligand exchange coupling is of paramount importance in stabilizing high-spin states of mixed metal-biradical complexes.  相似文献   

8.
The magnetic susceptibility of Cu3(C6H5N2O)3(OH)SO4 · 10.5 H2O crystals was measured in the temperature interval 4.2–11 K and magnetic field range 0–50 kOe. The theoretical analysis of the effects of antisymmetric exchange was performed. An adequate interpretation of the experimental results may be done in terms of an antisymmetric exchange which is about 12 cm?1 in the crystals discussed. The rhombic distortions of the trigonal cluster were shown to reduce the antisymmetric exchange.  相似文献   

9.
The binuclear [FeIII(bpca)(mu-bpca)Dy(NO3)4], having Single Molecule Magnet (SMM) properties, belonging to a series of isostructural FeIIILnIII complexes (Ln = Eu, Gd, Tb, Dy, Ho) and closely related FeIILnIII chain structures, was characterized in concise experimental and theoretical respects. The low temperature magnetization data showed hysteresis and tunneling. The anomalous temperature dependence of M?ssbauer spectra is related to the onset of magnetic order, consistent with the magnetization relaxation time scale resulting from AC susceptibility measurements. The advanced ab initio calculations (CASSCF and spin-orbit) revealed the interplay of ligand field, spin-orbit, and exchange effects and probed the effective Ising nature of the lowest states, involved in the SMM and tunneling effects.  相似文献   

10.
The properties of the spin state manifold of the tetranuclear cluster Ni[(OH)(2)Cr(bispictn)](3)]I(5).5H(2)O (bispictn = N,N'-bis(2-pyridylmethyl)-1,3-propanediamine) are investigated by combining magnetic susceptibility and magnetization measurements with an inelastic neutron scattering (INS) study on an undeuterated sample of Ni[(OH)(2)Cr(bispictn)](3)]I(5).5H(2)O. The temperature dependence of the magnetic susceptibility indicates an S = (1)/(2) ground state, which requires antiferromagnetic interactions both between Cr(3+) and Ni(2+) ions and among the Cr(3+) ions. INS reveals potential single-ion anisotropies to be negligibly small and enables an accurate determination of the exchange parameters. The best fit to the experimental energy level diagram is obtained by an isotropic spin Hamiltonian H = J(CrNi)(S(1)().S(4)() + S(2)().S(4)() + S(3)().S(4)()) + J(CrCr)(S(1)().S(2)() + S(1)().S(3)() + S(2)().S(3)()) with J(CrNi) = 1.47 cm(-)(1) and J(CrCr) = 1.25 cm(-)(1). With this model, the experimental intensities of the observed INS transitions as well as the temperature dependence of the magnetic data are reproduced. The resulting overall antiferromagnetic exchange is rationalized in terms of orbital exchange pathways and compared to the situation in oxalato-bridged clusters.  相似文献   

11.
The temperature dependence of the saturation magnetization of a magnetite-based magnetic fluid has been directly measured with a vibrating-coil magnetometer equipped with a superconducting solenoid. The magnetization varies in accordance with the 1 ? αT 2 law. Coefficient α = 1.4 × 10?6 is almost twice as high as that of monolithic magnetite. The results of measuring the susceptibility of magnetic fluids stabilized with oleic and linoleic acids have been analyzed using novel corrections to the temperature dependence of particle magnetization. The susceptibility of ultimately concentrated samples is in good agreement with the Ivanov-Huke-Lücke and Morozov theories. The susceptibility of samples with a medium concentration is adequately described by the Ivanov theory alone. The susceptibility of low-concentrated samples increases to the level predicted by the Morozov theory in the case of particle aggregation. The widening of the particle size distribution leads to a reduction in the level of the interparticle interactions.  相似文献   

12.
This work presents a fortran77 code based on an effective electrostatic model of point charges around a rare earth ion. The program calculates the full set of crystal field parameters, energy levels spectrum, and wave functions, as well as the magnetic properties such as the magnetization, the temperature dependence of the magnetic susceptibility, and the Schottky contribution to the specific heat. It is designed for real systems that need not bear ideal symmetry and it is able to determine the easy axis of magnetization. Its systematic application to different coordination environments allows magneto‐structural studies. The package has already been successfully applied to several mononuclear systems with single‐molecule magnetic behavior. The determination of effective point charge parameters in these studies facilitates its application to new systems. In this article, we illustrate its usage with two example studies: (a) an ideal cubic structure coordinating a lanthanoid ion and (b) a system with slow relaxation of the magnetization, LiHoxY(1‐x)F4. © 2013 Wiley Periodicals, Inc.  相似文献   

13.
Use of PhPyCNO (-)/X (-) "blends" (PhPyCNOH = phenyl 2-pyridyl ketoxime; X (-) = OH (-), alkanoato, ClO 4 (-)) in copper chemistry yielded trinuclear clusters that have been characterized as inverse-9-metallacrown-3 compounds and accommodate one or two guest ligands. The magnetic behavior showed a large antiferromagnetic interaction and a discrepancy between the low-temperature magnetic behavior observed experimentally and that predicted from a magnetic model. The discrepancy between the Brillouin curve and the experimental result provides clear evidence of the influence of the antisymmetric interaction. Introducing the antisymmetric terms derived from the fit of the susceptibility data into the magnetization formula caused the simulated curve to become nearly superimposable on the experimental one. The EPR data indicated that the compound [Cu 3(PhPyCNO) 3(mu 3-OH)(2,4,5-T) 2] ( 1), where 2,4,5-T is 2,4,5-trichlorophenoxyacetate, has isosceles or lower magnetic symmetry (delta not equal 0), that antisymmetric exchange is important ( G not equal 0), and that Delta E > hnu. The structures of the complexes 1 and [Cu 3(PhPyCNO) 3(mu 3-OH)(H 2O)(ClO 4) 2] ( 2) were determined using single-crystal X-ray crystallography. Theoretical calculations based on density functional theory were performed using the full crystal structures of 1, 2, [Cu 3(PhPyCNO) 3(OH)(CH 3OH) 2(ClO 4) 2] ( 3), and [Cu 3(PhPyCNO) 3(mu 3-OMe)(Cl)(ClO 4)] ( 4). The geometries of the model compounds [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3(mu 3-OH)(mu 2-HCOO)(HCOO)] ( 5), [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3(mu 2-HCOO)(HCOO)] (+) ( 6), [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3(mu 3-O)] (+) ( 7), and [Cu 3(kappa (3) N, N, O-HNCHCHNO) 3] (3+) ( 8) were optimized at the same level of theory for both the doublet and quartet states, and vibrational analysis indicated that the resulting equilibrium geometries corresponded to minima on the potential energy surfaces. Both e g and t 2g magnetic orbitals seem to contribute to the magnetic exchange coupling. The latter contribution, although less important, might be due to overlap of the t 2g orbitals with the p-type orbitals of the central triply bridging oxide ligand, thereby affecting its displacement from the Cu 3 plane and contributing to the antiferromagnetic coupling. The crucial role of the triply bridging oxide (mu 3-O) ligand on the antiferromagnetic exchange coupling between the three Cu(II) magnetic centers is further evidenced by the excellent linear correlation of the coupling constant J with the distance of the mu 3-O ligand from the centroid of the Cu 3 triangle.  相似文献   

14.
The cyano-bridged trinuclear compound, (NEt(4))[Mn(2)(salmen)(2)(MeOH)(2)Fe(CN)(6)] (1) (salmen(2)(-) = rac-N,N'-(1-methylethylene)bis(salicylideneiminate)), reported previously by Miyasaka et al. (ref 19d) has been reinvestigated using combined ac and dc susceptibility measurements. The strong frequency dependence of the ac susceptibility and the slow relaxation of the magnetization show that 1 behaves as a single-molecule magnet with an S(T) = (9)/(2) spin ground state. Its relaxation time (tau) follows an Arrhenius law with tau(0) = 2.5 x 10(-)(7) s and Delta(eff)/k(B) = 14 K. Moreover, below 0.3 K, tau saturates around 470 s, indicating that quantum tunneling of the magnetization becomes the dominant process of relaxation. (NEt(4))[Mn(2) (5-MeOsalen)(2)Fe(CN)(6)] (2) (5-MeOsalen(2)(-) = N,N'-ethylenebis(5-methoxysalicylideneiminate)) is a heterometallic one-dimensional assembly made of the trinuclear [Mn(III)(SB)-NC-Fe(III)-CN-Mn(III)(SB)] (SB is a salen-type Schiff-base ligand) motif similar to 1. Compound 2 has two types of bridges, a cyano bridge (-NC-) and a biphenolate bridge (-(O)(2)-), connecting Mn(III) and Fe(III) ions and the two Mn(III) ions, respectively. Both bridges mediate ferromagnetic interactions, as shown by modeling the magnetic susceptibility above 10 K with g(av) = 2.03, J(Mn)(-)(Fe)/k(B) = +6.5 K, and J'/k(B) = +0.07 K, where J' is the exchange coupling between the trimer units. The dc magnetic measurements of a single crystal using micro-SQUID and Hall-probe magnetometers revealed a uniaxial anisotropy (D(T)/k(B) = -0.94 K) with an easy axis lying along the chain direction. Frequency dependence of the ac susceptibility and time dependence of the dc magnetization have been performed to study the slow relaxation of the magnetization. A mean relaxation time has been found, and its temperature dependence has been studied. Above 1.4 K, both magnetic susceptibility and relaxation time are in agreement with the dynamics described in the 1960s by R. J. Glauber for one-dimensional systems with ferromagnetically coupled Ising spins (tau(0) = 3.7 x 10(-)(10) s and Delta(1)/k(B) = 31 K). As expected, at lower temperatures below 1.4 K, the relaxation process is dominated by the finite-size chain effects (tau'(0) = 3 x 10(-)(8) s and Delta(2)/k(B) = 25 K). The detailed analysis of this single-chain magnet behavior and its two regimes is consistent with magnetic parameters independently estimated (J'and D(T)) and allows the determination of the average chain length of 60 nm (or 44 trimer units). This work illustrates nicely a new strategy to design single-chain magnets by coupling ferromagnetically single-molecule magnets in one dimension.  相似文献   

15.
The syntheses, structures, and magnetic properties of two new single-stranded hexadecanuclear manganese wheels [Mn16(CH3COO)8(CH3CH2CH2COO)8(teaH)12] x 10 MeCN (1 x 10 MeCN) and [Mn16((CH3)2CHCOO)16(teaH)12] x 4 CHCl3 (2 x 4 CHCl3), where teaH(2-) is the dianion of triethanolamine, are reported. 1 crystallizes in the tetragonal I4(1)/a space group [a = b = 33.519(4) A and c = 16.659(2) A]. 2 crystallizes in the monoclinic C2/c space group [a = 21.473(5), b = 26.819(6), c = 35.186(7), and beta = 93.447(5) degrees]. Both complexes consist of 8 Mn(II) and 8 Mn(III) ions alternating in a wheel-shaped topology with 12 monoprotonated triethanolamine ligands. Variable-temperature direct current (DC) magnetic susceptibility data were collected in 1 T, 0.1 and 0.01 T fields, and in the 1.8-300 K temperature range for 1 and 2. Variable-temperature variable-field DC magnetic susceptibility data were obtained in the 1.8-10 K and 0.1-5 T ranges and least-squares fitting of these reduced magnetization versus H/T data indicates a S = 13 ground-state for 1 and 2. Single-crystal magnetization hysteresis measurements were performed in a 0.04-1 K temperature range for complex 2. Hysteresis loops were observed that showed a temperature dependence, which indicates that 2 exhibits magnetization relaxation and is a SMM. Both 1 and 2 show frequency-dependent out-of-phase signals in the AC susceptibility measurements, collected in a temperature range of 1.8-5 K and in the frequency range of 50-10,000 Hz. Extrapolation of the in-phase component of the AC susceptibility data to 0 K indicates an S = 12 ground state for 1 and an S = 11 ground-state for 2. Complex 1 has the highest-spin ground state reported to date for a single-stranded manganese wheel and is likely to be an SMM based on a frequency-dependent out-of-phase signal in the AC susceptibility. The AC susceptibility as well as magnetization hysteresis data for 2 confirm that this species is an SMM.  相似文献   

16.
A new lanthanide citrate motif of general formula [Ln(Hcit)(H2O)2.H2O]n, where Ln = Gd (1) and Nd (2) and Hcit3- = C(OH)(COO-)(CH2COO-)2, has been synthesized hydrothermally from Ln2O3 and citric acid at 100 degrees C and characterized by elemental analysis, IR, TG-DTA, single-crystal X-ray diffraction, and magnetic measurements. The structures can be seen as "ladder chains" along the a axis, with dinuclear Ln2O2 units serving as "steps" and R-COO groups as "uprights", which are connected by H bonds. The magnetic susceptibility between 2 and 300 K and the magnetization at 2 K, as a function of magnetic field between 0 and 5 T, were measured for both compounds. By modeling the magnetic behavior of the Gd compound with a dinuclear Hamiltonian [symbol: see text](S) = gmu(B)(S(A) + S(B))B(o) - J(o)S(A)S(B) (S(A) = S(B) = 7/2), a ferromagnetic exchange interaction J(o) = 0.039 cm(-1) was evaluated between Gd ions situated at d(o) = 4.321 angstroms in dinuclear units bridged by two symmetry-related tridentate carboxylate oxygens. The EPR spectrum of the Gd compound is discussed. The temperature dependence of the susceptibility of the Nd compound is caused by the depopulation of the excited crystal-field levels when the temperature decreases. The magnetic-field dependence of the magnetization of 2 is attributed to the ground-state Kramers' doublet populated at 2 K. The g factor of this ground-state doublet is calculated from the data and compared with values for other compounds reported in the literature.  相似文献   

17.
The study of the magnetic susceptibility of iron-oxygen quasi-two-dimensional nanostructures (nanolayers) showed that the dependence of the susceptibility on the number of iron-oxygen groups deposited on a silica support is nonmonotic. It was found that a two-dimensional magnetization region arises at a certain number of iron-oxygen groups in the surface layer of the support.  相似文献   

18.
The assembly of two-dimensional cyanide-bridged Fe(III)-Ni(II) square grid networks at the air-water interface and subsequent transfer of these networks as isolated monolayer, isolated bilayer, and multiple bilayer (multilayer) films via the Langmuir-Blodgett technique results in novel low-dimensional systems in which the effects of dimensionality on magnetic behavior in molecule-based materials can be observed. The magnetic response of these films between 2 < T < 300 K in dc fields from -50 < H < 50 kG and in 4 G ac fields from 1 Hz to 1 kHz are reported. The results show the presence of ferromagnetic domains with characteristic hysteresis in each of the three systems. The magnetic response for all three samples is anisotropic with a stronger field-cooled magnetization observed when the planes of the films are aligned parallel to the applied field. Additionally, each of the three samples shows frequency dependence in both the real and imaginary components of the ac susceptibility. This behavior is interpreted as being characteristic of spin glass-type ordering of ferromagnetic domains to form a cluster glass. A lower glass temperature (T(g)) is observed in the isolated monolayer film relative to the bilayer and multilayer samples. The bilayer sample shows two glass transitions at T(g1) = 3.8 K and T(g2) = 5.4 K, whereas only one transition at T(g) = 5.4 K is observed in the multilayer sample. The different magnetic responses of the three films are attributed to different in-plane, interplane, and long-range dipolar exchange interactions.  相似文献   

19.
This work presents the synthesis, structure determination and magnetic properties of a new complex, phenethylammonium tetrachloromanganate(II), (C(6)H(5)CH(2)CH(2)NH(3))(2)MnCl(4) (Mn-PEA). Single crystals of Mn-PEA were obtained from methanol solution using the solvent-evaporation method at room temperature. The crystal structure of Mn-PEA was determined by single-crystal X-ray diffraction (orthorhombic, space group Pbca, a = 7.2075(9), b = 7.3012(14), c = 39.413(6) ? and Z = 4). The structure consisted of an extended [MnCl(4)](2-) network and two phenethylammonium cations to form a two-dimensional halide perovskite structure. Temperature-dependent magnetization measurements indicated that Mn-PEA acted as a weak ferromagnet below T(C) = 44.3 K due to spin canting. Below T(C), the magnetic behavior differed significantly from the behavior commonly observed among weak ferromagnets. The susceptibility depended strongly on the crystal orientation, the external magnetic field strength, and the magnetic history. The isothermal magnetization for two orientations revealed a ferromagnetic moment with a spin-canting angle of 0.04° and a spin-flop transitions with H(sf) = 3.5 T. The weak ferromagnetism, which manifested as spontaneous magnetization and magnetic hysteresis near a field strength of zero, was driven by interplay between the easy axis and the antisymmetric Dzyaloshinsky-Moriya (DM) interaction, leading to directional dependent magnetic behavior.  相似文献   

20.
We report unusual cooling field dependence of the exchange bias in oxide-coated cobalt nanoparticles embedded within the nanopores of a carbon matrix. The size-distribution of the nanoparticles and the exchange bias coupling observed up to about 200 K between the Co-oxide shell (~3-4 nm) and the ferromagnetic Co-cores (~4-6 nm) are the key to understand the magnetic properties of this system. The estimated values of the effective anisotropy constant and saturation magnetization obtained from the fit of the zero-field cooling and field cooling magnetization vs. temperature curves agree quite well with those of the bulk fcc-Co.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号