首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The new Pd(II), Pt(II), Re(V), Mo(VI) and W(VI) complexes of 2-hydroxynicotinic acid (H2nicO), trans-[PdCl(HnicO)(PPh3)2]·0.75CH3CN (1), K[PdCl(HnicO)2]·H2O (2), [Pd(HnicO)2(bipy)] (3), cis-[PtCl(HnicO)(PPh3)2]·0.75CH3OH·0.5H2O (4), [PtCl(HnicO)(bipy)] (5), cis-[ReOI2(HnicO)(PPh3)] (6), Na2[Mo2O6(HnicO)2]·5H2O (7), Na2[Mo4O12(HnicO)2]·2H2O (8) and Na2[W2O6(HnicO)2]·5H2O (9) have been prepared. The crystal structures of 1 and 4, were determined by X-ray diffraction and show the HnicO ligand coordinated to palladium or platinum through the nitrogen atom only. Infrared, Raman, 1H and 13C{1H} NMR spectroscopic data for the complexes are presented and are in agreement with the crystallographic results.  相似文献   

2.
Different strategies to improve the excited state properties of polypyridinic complexes by varying ligand structure and molecular geometry are described. Bidentate and tetradentate ligands based on fragments as dipyrido[3,2-a:2′,3′-c]phenazine, dppz, and pyrazino[2,3-f][1,10]-phenanthroline, ppl, have been used. Quinonic residues were fused to these basic units to improve acceptor properties. Photophysical studies were performed in order to test theoretical predictions.  相似文献   

3.
Single-crystal structure determinations of all nine transition metal hexafluorides (Mo, Tc, Ru, Rh, W, Re, Os, Ir, and Pt) at -140 degrees C are presented. All compounds crystallize alike and have the same molecular structure. The bond length sequence r(w-F) congruent with r(Re-F) congruent with r(Os-F) < r(Ir-F) < r(Pt-F) is confirmed and paralleled by the sequence r(Mo-F) congruent with r(Tc-F) congruent with r(Ru-F) < r(Rh-F). Within the limits of precision, no systematic deviation from octahedral symmetry can be established. DFT and ab initio calculations predict octahedral structures for MoF6 and RhF6 and tetragonally distorted structures for ReF6 and RuF6. The energy barrier toward octahedral structures is only 2.5 kJ mol(-1) in the two latter cases. Calculated electron affinities are in the sequence MoF6 < TcF6 < RhF6 < RuF6 with a value of 6.98 eV for the latter. O2+RhF6- crystallized in an undisordered manner in P, isostructural to the low-temperature form of O2+AuF6-. RhF6- has a D4h compressed octahedral structure, while AuF6- is essentially octahedral. The absorption spectrum of TcF6 and the 19F and 195NMR spectra of PtF6 are presented.  相似文献   

4.
From the viewpoint of metal coordination we examine the structural characteristics of several new members of transition metal thiophosphates (i.e., MPS phases with M = V, Nb, Ta), in which various ligands such as S2−, S2−2, and phosphorus-sulfur polyanions PnSxm (1 ≤ n ≤ 4; 3 ≤ m ≤ 13; 2 ≤ x ≤ 6) provide either an octahedral or a bicapped prismatic coordination of the metal. Tight-binding band electronic structure calculations show that the low-lying acceptor orbitals responsible for lithium intercalation of thiophosphates are their d-block bands. This prediction is confirmed by our electrochemical lithium intercalation study which reveals that the reduction sites of thiophosphates are their metal cations. Molecular orbital calculations are carried out on vanadium compounds with extremely short interligand S···S contacts. The occurrence of such short contact distances is not caused by covalent bonding in the S···S contacts but by the small size of vanadium cations which forces its surrounding sulfur ligands to squeeze one another.  相似文献   

5.
Results of molecular dynamics simulation studies of structural and dynamical properties of 12-, 13-, and 14-atom transition metal clusters are presented. The calculations are carried out using a Gupta-like potential expressed in reduced units. The transformation to absolute units involves two size-dependent parameters which effectively convert the potential into a size-dependent one. The minimum energy geometries of the clusters are obtained through the technique of simulated thermal quenching. A melting-like transition is observed as the energy of the clusters is increased. A novel element of the transition is that it may involve a premelting state.  相似文献   

6.
The Stern-Gerlach deflections of small alkali clusters (N<6) and iron clusters (10<N<500) show that the paramagnetic alkali clusters always have a non-deflecting component, while the iron clusters always deflect in the high field direction. Both of these effects appear to be related to spin relaxation however in the case of alkali clusters it is shown that they are in fact caused by avoided level crossing in the Zeeman diagram. For alkali clusters the relatively weak couplings cause reduced magnetic moments where levels cross. For iron clusters however the total spin is strongly coupled to the molecular framework. Consequently this coupling is responsible for avoided level crossings which ultimately cause the total energy of the cluster to decrease with increasing magnetic field so that the iron clusters will deflect in one direction when introduced in an inhomogeneous magnetic field. Experiment and theory are discussed for both cases.  相似文献   

7.
Summary K n [ZrW11O39M(H2O)]·xH2O complexes were prepared and characterized by elemental analysis, u.v.-vis., i.r. spectroscopy and electrochemistry. The title heteropolyanions catalyse olefin epoxidation by iodosylbenzene.  相似文献   

8.
Johnson JR  Panas I 《Inorganic chemistry》2000,39(15):3181-3191
Addition of water to molecular transition metal oxides (TiO2(g) and CrO3(g)) and oxyhydroxides (ScO(OH)(g), VO2(OH)(g), and MnO3(OH)(g)) was studied by means of quantum chemistry. In the investigated reactions, each reaction step comprised the breaking of one M=O bond and the formation of two OH groups. Exothermicity was observed when the product had tetrahedral or lower oxygen coordination. The reactions were found to involve stable water complexes as intermediates. The stabilities of such complexes were accentuated in the addition reaction Sc(OH)3(g) + H2O(g), in which the formation of a tetrahedral complex was found exothermic. For VO(OH)3(g), CrO2(OH)2(g), and MnO3(OH)(g), water addition to the remaining M=O bonds was found endothermic, whereas the formation of water complexes, using hydrogen bonds and preserving the oxyhydroxide kernel, was preferred. Thus, the sequence of such kernels for water clustering in the investigated reactions was found to be Sc(OH)3.H2O(g), Ti(OH)4(g), VO(OH)3(g), CrO2(OH)2(g), and MnO3(OH)(g). These stability considerations are important, as CrO2(OH)2(g) is believed to be the product of water-induced degradation of the protective chromium oxide scale on stainless steel at elevated temperatures.  相似文献   

9.
The kinetics of the reduction of N2 to N2H4 and NH3 by TiIII-MoIII hydroxide was studied at pH I I and 303-333 K, and the activation energies for these reactions and also for the reaction N2H4 2 NH3 were determined (29, 70, and 25 kJ mol respectively). It was concluded that -90 % of ammonia was formed by the direct reduction of N2 without intermediate formation of hydrazine. A mechanism of this reaction is suggested, which includes the proton insertion into the N-N bond favored by an enhanced electron density at the nitrogen atoms, according to the data of the quantum-mechanical calculation.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 6, pp. 1402–1405, June, 1996.  相似文献   

10.
Phosphine ligands determine the excited state properties of a variety of coordination compounds. Phosphines not only influence metal-centered excited states, but participate directly in charge transfer transitions owing to their electron donating and accepting ability. Moreover, intraligand excited states are accessible if the phosphine carries suitable substituents. This diversity is illustrated by selected examples. The excited state behavior is discussed on the basis of spectral (absorption and emission) and photochemical properties of appropriate phosphine complexes.  相似文献   

11.
12.
The relative threshold dissociation energies of a series of flavonoid/transition metal/auxiliary ligand complexes of the type [MII (flavonoid - H) auxiliary ligand]+ formed by electrospray ionization (ESI) were measured by energy-variable collisionally activated dissociation (CAD) in a quadrupole ion trap (QIT). For each of the isomeric flavonoid diglycoside pairs, the rutinoside (with a 1-6 inter-saccharide linkage) requires a greater CAD energy and thus has a higher dissociation threshold than its neohesperidoside (with a 1-2 inter-saccharide linkage) isomer. Likewise, the threshold energies of complexes containing flavones are higher than those containing flavanones. The monoglycoside isomers also have characteristic threshold energies. The flavonoids that are glycosylated at the 3-O- position tend to have lower threshold energies than those glycosylated at the 7-O- or 4'-O- position, and those that are C- bonded have lower threshold energies than the O- bonded isomers. The structural features that substantially influence the threshold energies include the aglycon type (flavanone versus flavone), the type of disaccharide (rutinose versus neohesperidose), and the linkage type (O- bonded versus C- bonded). Various computational means were applied to probe the structures and conformations of the complexes and to rationalize the differences in threshold energies of isomeric flavonoids. The most favorable coordination geometry of the complexes has a plane-angle of about 62 degrees , which means that the deprotonated flavonoid and 2,2'-bipyridine within a complex do not reside on the same plane. Stable conformations of five cobalt complexes and five deprotonated flavonoids were identified. The conformations were combined with the point charges and helium accessible surface areas to explain qualitatively the differences in threshold energies for isomeric flavonoids.  相似文献   

13.
The application of nitrogen adsorption, mercury porosimetry and inverse gas chromatography (IGC) for the examination of surface physical and chemical properties of hybrid materials is discussed. Hybrid materials were prepared from tetraethoxysilane (TEOS), tetrabutyl orthotitanate (TBOT), and hydroxyl terminated polydimethyl siloxane (PDMS) for different TBOT concentrations. It was found that TBOT affects specific surface areas, pore volumes and pore sizes, but does not affect pore morphology. Surface chemical properties were analyzed by IGC. It was found that the dispersive surface energy was a function of the material pore size. Values between 36 and 42 mJ···m-2 were obtained for the dispersive surface energy which are consistent with those of hybrid materials. On the other hand, the acid-base (k , k ) surface constants showed good correlation with the TBOT concentration. These materials can be considered as anphoteric ones, and it was found that k increases from 1.07 to 1.47, and k increases from 0.76 to 1.73 when the TBOT concentration increases from 0 to 7%. Such increase is assigned to the formation of Si–O–Ti bonds as it was deduced from an IR band appearing at 930 cm-1 in the FT-IR spectra.  相似文献   

14.
The orientation properties of some complexes of chromium (III) or cobalt (II) with oxygen-containing ligands are presented. The orientation obtained is mostly homeotropic. The possibility of anchoring by coordination of liquid crystal (LC) molecules to the transition metal ion within the alignment layer is discussed on the basis of spectroscopic arguments.  相似文献   

15.
Deeth RJ 《Inorganic chemistry》2008,47(15):6711-6725
A general molecular mechanics method is presented for modeling the symmetric bidentate, asymmetric bidentate, and bridging modes of metal-carboxylates with a single parameter set by using a double-minimum M-O-C angle-bending potential. The method is implemented within the Molecular Operating Environment (MOE) with parameters based on the Merck molecular force field although, with suitable modifications, other MM packages and force fields could easily be used. Parameters for high-spin d (5) manganese(II) bound to carboxylate and water plus amine, pyridyl, imidazolyl, and pyrazolyl donors are developed based on 26 mononuclear and 29 dinuclear crystallographically characterized complexes. The average rmsd for Mn-L distances is 0.08 A, which is comparable to the experimental uncertainty required to cover multiple binding modes, and the average rmsd in heavy atom positions is around 0.5 A. In all cases, whatever binding mode is reported is also computed to be a stable local minimum. In addition, the structure-based parametrization implicitly captures the energetics and gives the same relative energies of symmetric and asymmetric coordination modes as density functional theory calculations in model and "real" complexes. Molecular dynamics simulations show that carboxylate rotation is favored over "flipping" while a stochastic search algorithm is described for randomly searching conformational space. The model reproduces Mn-Mn distances in dinuclear systems especially accurately, and this feature is employed to illustrate how MM calculations on models for the dimanganese active site of methionine aminopeptidase can help determine some of the details which may be missing from the experimental structure.  相似文献   

16.
Work in mesoporous silica-based materials began in the early 1990s with work by Mobil. These materials had pore sizes from 20-500 A and surface areas of up to 1500 m(2) g(-1) and were synthesized by a novel liquid crystal templating approach. Researchers subsequently extended this strategy to the synthesis of mesoporous transition metal oxides, a class of materials useful in catalysis, electronic, and magnetic applications because of variable oxidation states, and populated d-bands-features not found in silicates. These materials are already showing promise in electronic and optical applications hinging on the semiconducting properties of transition metal oxides and their potential to act as electron acceptors, an important feature in the design of cathodic materials. This is the first general review of non-silicate mesoporous materials and will focus on recent advances in this area, emphasizing materials possessing unique electronic, magnetic, or optical properties. Also covered are advances in the synthesis and applications of mesostructured sulfides as well as a new class of template-synthesized platinum-based materials that show promise in heterogeneous catalysis.  相似文献   

17.
Transition metal phosphorus trisulfide compounds with the general formula MPS3, with M = Mn, Fe, Ni, have been prepared by chemical vapor transport, vapor sublimation, and direct combination of the elements. Chemical transport is accomplished by using 75 Torr of chlorine gas as a transport agent and a temperature gradient of 750° → 690°C or 700° → 640°C. The structure of these three compounds, which belongs to the monoclinic space group C2m, is related to that of CdCl2 with a distorted cubic close-packing of the sulfur atoms. Metal atoms and phosphorus-phosphorus pairs occupy the trigonally distorted octahedral holes in a ratio of 2:1 and are ordered throughout the structure. Magnetic susceptibility measurements indicate that all three compounds are antiferromagnetic. The paramagnetic moments indicate that the metal ions in each case exist in the divalent high-spin state.  相似文献   

18.
The electronic structure and transport properties of the Cp(2)BzM(2) (M = Sc, Ti, and V) tripledeckers are studied by spin polarized density functional theory and nonequilibrium Green's function method considering high-spin and low-spin states. Total energy calculations show that the sandwich structured Cp(2)BzSc(2) exists in a singlet state with no local magnetic moment on the Sc atoms. Cp(2)BzTi(2) in triplet state exists as a distorted tripledecker and is more stable than singlet and quintet states. Cp(2)BzV(2) stabilizes in the quintet state with a spin density of 2.4 on each vanadium atom. Hund's coupling plays a vital role in stabilizing the higher multiplets in case of titanium and vanadium clusters. In bigger clusters like Cp(3)Bz(2)M(4), Sc multidecker has one unpaired spin, Ti multidecker has five unpaired spins, and V multidecker has seven unpaired spins in total. Spin polarized electronic transport is found for all states of vanadium tripledecker and one state of the titanium tripledecker when connected to a gold two probe junction. Moderate to high-spin filter efficiencies are calculated for these states. Cp(2)BzSc(2) shows spin-independent electronic transport for all electronic states when introduced in the gold two probe junction. Current versus voltage curves are reported for selected clusters in the two probe setup.  相似文献   

19.
The magnetic properties of molecular metal cluster compounds resemble those of small metal particles in the metametallic size regime. Even-electron metal carbonyl clusters with 10 or more metal atoms are paramagnetic, because their frontier orbital separations of less than 1 eV lead to high-spin electronic configurations. The rhodium cluster [Rh17S2(CO)32]3? gives EPR below 200 K withg=2.04, the first example of this type of paramagnetism in an even-electron carbonyl cluster of this 4d metal. Its spectral parameters are compared with those of osmium carbonyl clusters and some significant differences highlighted. Attempts have also been made to generate radical cations from lower-nuclearity, diamagnetic molecular clusters such as Rh6(CO)16 by chemical oxidation in sulphuric acid. An EPR active species (g=2.09) believed to be [Rh6(CO)16]+ has been obtained.  相似文献   

20.
Metal chelation can alter the activity of free biomolecules by modifying their structures or stabilizing higher energy tautomers. In recent years, mass spectrometric techniques have been used to investigate the effects of metal complexation with proteins, nucleobases and nucleotides, where small conformational changes can have significant physiological consequences. In particular, infrared multiple photon dissociation spectroscopy has emerged as an important tool for determining the structure and reactivity of gas-phase ions. Unlike other mass spectrometric approaches, this method is able to directly resolve structural isomers using characteristic vibrational signatures. Other activation and dissociation methods, such as blackbody infrared radiative dissociation or collision-induced dissociation can also reveal information about the thermochemistry and dissociative pathways of these biological ions. This information can then be used to provide information about the structures of the ionic complexes under study. In this article, we review the use of gas-phase techniques in characterizing metal-bound biomolecules. Particular attention will be given to our own contributions, which detail the ability of metal cations to disrupt nucleobase pairs, direct the self-assembly of nucleobase clusters and stabilize non-canonical isomers of amino acids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号