首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
本文综述了自20世纪80年代以来基于钴配合物的均相光催化二氧化碳还原研究成果,以钴配合物催化剂的结构分类并结合时间顺序回顾了近四十年来该领域的发展轨迹,重点总结了用于光催化二氧化碳还原研究的金属钴配合物的结构、催化活性以及光催化体系的构成等特点,分析了该领域面临的挑战并展望了未来的发展方向。  相似文献   

2.
The efficient storage of solar energy in chemical fuels, such as hydrogen, is essential for the large-scale utilisation of solar energy systems. Recent advances in the photocatalytic production of H(2) are highlighted. Two general approaches for the photocatalytic hydrogen generation by homogeneous catalysts are considered: HX (X = Cl, Br) splitting involving both proton reduction and halide oxidation via an inner-sphere mechanism with a single-component catalyst; and sensitized H(2) production, employing sacrificial electron donors to regenerate the active catalyst. Future directions and challenges in photocatalytic H(2) generation are enumerated.  相似文献   

3.
Solar fuels have proven to be one of the important promising approaches to provide clean energy of H2. It is an effective strategy for H2 production to construct photocatalytic systems using semiconductor as a sensitizer and molecular catalyst as the H2 evolution catalyst. In the semiconductor-molecular photocatalyst systems (SMP systems) for proton reduction, the interfacial charge transfer, including electron and hole transfer, is the determining factor for the photocatalytic process from kinetic aspects. The knowledge of the interfacial charge transfer is of utmost importance for understanding the photocatalytic systems. This review focuses on the interfacial charge transfer in SMP systems for proton reduction, with a special emphasis on the advances in the studies on the kinetic aspects of interfacial charge transfer.  相似文献   

4.
Artificial photosynthesis—reduction of CO2 into chemicals and fuels with water oxidation in the presence of sunlight as the energy source—mimics natural photosynthesis in green plants, and is considered to have a significant part to play in future energy supply and protection of our environment. The high quantum efficiency and easy manipulation of heterogeneous molecular photosystems based on metal complexes enables them to act as promising platforms to achieve efficient conversion of solar energy. This Review describes recent developments in the heterogenization of such photocatalysts. The latest state‐of‐the‐art approaches to overcome the drawbacks of low durability and inconvenient practical application in homogeneous molecular systems are presented. The coupling of photocatalytic CO2 reduction with water oxidation through molecular devices to mimic natural photosynthesis is also discussed.  相似文献   

5.
Experiments have been performed in the gas phase to investigate the stability of complexes of the general form [Pb(ROH)(N)](2+). With water as a solvent, there is no evidence of [Pb(H(2)O)(N)](2+); instead [PbOH(H(2)O)(N-1)](+) is observed, where lead is considered to be held formally in a +2 oxidation state by the formation of a hydroxide core. As the polarizability of the solvating ligands is increased through the use of straight chain alcohols, ROH, solvation of Pb(2+) is observed without proton transfer when R >or= CH(3)CH(2)CH(2)-. The relative stabilities of [Pb(ROH)(4)](2+) complexes with respect to proton transfer are further investigated through the application of density functional theory to examples where R = H, methyl, ethyl, and 1-propyl. Of three trial structures examined for [Pb(ROH)(4)](2+) complexes, in all cases those with the lowest energy comprised of three solvent molecules were directly bound to the central cation, with the fourth molecule held in a secondary shell by hydrogen bonds. The implications of this arrangement as a favorable starting structure for proton transfer are discussed. Conditions for the stability of particular Pb(II)/ligand combinations are also discussed in terms of the hard-soft acid-base principle. Charge population densities calculated for the central lead cation and oxygen donor atoms across the ROH range are used to support the proposal that proton transfer occurs when a ligand is hard. Stability of the [Pb(ROH)(4)](2+) unit is commensurate with a decrease in the ionic character of the bond between Pb(2+) and a ligand; this in turn reflects a softening of the ligand as the alkyl chain increases in length. From the calculations, the most favorable protonated product is, in all cases, (ROH)(2)H(+). The trends observed with lead are compared with Cu(II), which is capable of forming stable gas-phase complexes with water and all of the alcohols considered here.  相似文献   

6.
Photocatalytic systems for CO2 reduction using metal complexes, especially rhenium(I) complexes as a main component, are reviewed: mononuclear Re(I) complexes, mixed systems with two different Re(I) complexes, and supramolecule systems with a Re(I) complex connected to a ruthenium(II) complex. We focus on the mechanistic studies and the architecture for constructing the photocatalytic systems based on the mechanism.  相似文献   

7.
Four different heteroleptic [Cu(N^N)(P^P)]PF6 complexes, which combine classical bidentate diimine ligands and sterically demanding diphosphine ligands, are studied by a combination of ultrafast time‐resolved spectroscopy and quantum chemical calculations. The light‐induced excited state processes, accompanied by a structural change, are discussed with respect to the application of these complexes as a new class of noble‐metal‐free photosensitizers in proton reducing systems. In particular, the influence of different substituents in the ligand backbone on the photophysical properties is highlighted.  相似文献   

8.
Evidence is provided that in a gas-solid photocatalytic reaction the removal of photogenerated holes from a titania (TiO2) photocatalyst is always detrimental for photocatalytic CO2 reduction. The coupling of the reaction to a sacrificial oxidation reaction hinders or entirely prohibits the formation of CH4 as a reduction product. This agrees with earlier work in which the detrimental effect of oxygen-evolving cocatalysts was demonstrated. Photocatalytic alcohol oxidation or even overall water splitting proceeds in these reaction systems, but carbon-containing products from CO2 reduction are no longer observed. H2 addition is also detrimental, either because it scavenges holes or because it is not an efficient proton donor on TiO2. The results are discussed in light of previously suggested reaction mechanisms for photocatalytic CO2 reduction. The formation of CH4 from CO2 is likely not a linear sequence of reduction steps but includes oxidative elementary steps. Furthermore, new hypotheses on the origin of the required protons are suggested.  相似文献   

9.
A theoretical investigation of the substituent effects on the two-center, three-electron (2c-3e) bond involved between unsaturated functional groups and an amine nitrogen is presented. The competitive hydrogen-bonded complexes are also studied. In both cases, the bond energies are found to be in the range of 20-30 kcal mol(-1). The variation of these energies is discussed with respect to the electron-donating effect of the substitutents, as well as with respect to the alpha-bonded atom of the organic functional group (O, S, NH). For the 2c-3e bonds, the results are discussed on the basis of the differences of the ionization potential (delta IP) of the separated fragments and can be rationalized through the valence bond theory. For the hydrogen bonds, the substituent influence is discussed by using the differences of the proton affinities (delta PA) of the substrates. The resonating nature of the hydrogen bond in these cationic systems is investigated and is found to account for most of the binding energy. Marcus theory is compared with the proposed resonating model.  相似文献   

10.
Carbon dioxide (CO2) is one of the main greenhouse gases in the atmosphere. The conversion of CO2 into solar fuels (CO, HCOOH, CH4, CH3OH, etc.) using artificial photosynthetic systems is an ideal way to utilize CO2 as a resource and reduce CO2 emissions. A typical artificial photosynthetic system is composed of three key components: a photosensitizer (PS) to harvest visible light, a catalyst (C) to catalyze CO2 or protons into carbon-based fuels or H2, respectively, and a sacrificial electron donor (SED) to consume the holes generated in the PS. In most cases, the PS and catalyst are two different components of a system. However, some components that possess both light harvesting and redox catalysis functionalities, e.g., nano-semiconductors, are referred to as photocatalysts. During photocatalysis, the PS is typically excited by photons to generate excited electrons. The excited electrons in the PS are transferred to the catalyst to generate a reduced catalyst. The reduced catalyst is used as an active intermediate to perform CO2 binding and transformation. The PS can be recovered through a reaction with the SED. Nano-semiconductors have been used as photosensitizers and/or photocatalysts in photocatalytic CO2 reduction systems owing to their excellent photophysical and photochemical properties and photostability. CdS and CdSe nano-semiconductors, such as quantum dots, nanorods, and nanosheets, have been widely used in the construction of photocatalytic CO2 reduction systems. Systems based on CdS or CdSe nano-semiconductors can be classified into three categories. The first category is systems based on CdS or CdSe photocatalysts. In these systems, CdS or CdSe nano-semiconductors function as photocatalysts to catalyze CO2 reduction without a co-catalyst under visible-light irradiation. The CO2 reduction reaction occurs at the surface of the CdS or CdSe nano-semiconductors. The second category is systems based on CdS or CdSe composite photocatalysts. CdS or CdSe nano-semiconductors are combined with functional materials, such as reduced graphene oxide or TiO2, to prepare composite photocatalysts. These composite photocatalysts are expected to improve the lifetime of the charge separation state and inhibit the photocorrosion of the nano-semiconductors during photocatalysis. The third category is hybrid systems containing a CdS nano-semiconductor and molecular catalysts, such as nickel and cobalt complexes and iron porphyrin. In these hybrid systems, CdS functions as a photosensitizer and the CO2 reduction reaction occurs at the molecular catalyst. This review article introduces the construction of artificial photosynthetic systems and the photocatalytic mechanism of nano-semiconductors, and summarizes the representative works in the three aforementioned categories of systems. Finally, the challenges of nano-semiconductors for photocatalytic CO2 reduction are discussed.  相似文献   

11.
系统总结了金属有机框架(MOFs)基材料在光催化还原CO2中的最新研究进展, 其中包括MOFs直接作为光催化剂和作为复合光催化2个主要部分, 讨论了MOFs基光催化剂在催化还原CO2方面展现出的独特优势, 并对MOFs基光催化剂的结构稳定性与CO2转化效率等问题进行讨论与分析, 对未来发展趋势进行了展望.  相似文献   

12.
水环境中铜的光化学研究进展   总被引:1,自引:0,他引:1  
水环境中的铜主要以配合物形式存在,大多具有光化学活性.由于铜在光化学过程中的氧化还原循环可以导致其配体以及水体中有机污染物的降解,所以铜及其配合物在污染修复技术中的应用逐渐受到关注.本文综述了水环境中铜的光化学研究进展以及在多相和均相光催化体系中铜对污染修复的影响.  相似文献   

13.
在消除了质子缺乏、光生电子-空穴复合对Cr6 光催化还原负效应影响下,比较了TiO2和Ag/TiO2(Ag质量分数1.0%)光催化还原活性.结果表明,相同条件下Ag/TiO2表现出比TiO2更高的催化活性.EPR分析表明,对于Ag/TiO2,UV照射后Ag表面有活性物种O2生成,在TiO2上有活性中心表相Ti3 生成.光生电子通过表相Ti3 向Cr6 传递电子是cr6 光催化还原的速度控制步骤.较多的表相Ti3 参与还原反应是Ag/TiO2表现出较高催化活性的主要原因,担载Ag上积聚光生电子的较强流动性对反应也起到一定促进作用.  相似文献   

14.
A simple relation is found that connects the proton displacement value along the line of an H-bond X-H…Y at its formation with the proton transfer barrier to the acceptor Y. The fulfillment of the relation is verified by quantum-chemical calculations at the B3LYP/6-31+G(d, p) level of a series of H-bonded molecular complexes at different interatomic distances X…Y. With the aim to analyze the accuracy of this relation, calculations of model complexes were also performed with different basis sets. The effects of the basis set extension and electron correlation on the calculated values of the proton transfer barrier and the length of the X-H covalent bond in the molecular complex are considered. Using the suggested formalism for problems of proton transfer in H-bonded systems is discussed. A criterion of the barrierless transfer is introduced.  相似文献   

15.
The MP2/6-311++G(d,p) calculations were performed on several hydrogen-bonded systems. Different complexes were taken into account to analyze various types of hydrogen bonds, possessing different types of proton donors and proton acceptors as well as characterized by the broad range of the interaction energy. The Quantum Theory of Atoms in Molecules is applied. The results of the hybrid variational-perturbational approach are discussed. The unique properties of hydrogen bonds, where π-electrons act as the proton acceptor (X-H···π), are analyzed, and these interactions are compared with the other types of hydrogen bonds, mainly with C-H···Y interactions. It is shown that for X-H···π systems the ellipticity at the bond critical point of the proton···acceptor interaction is much greater than for the other types of hydrogen bonds. However, both X-H···π and C-H···Y interactions are characterized by the dominance of the dispersive energy.  相似文献   

16.
Ag改性提高TiO2对Cr(VI)的光催化还原活性机理   总被引:14,自引:0,他引:14  
在消除了质子缺乏、光生电子-空穴复合对Cr6+光催化还原负效应影响下,比较了TiO2和Ag/TiO2(Ag质量分数 1.0%)光催化还原活性.结果表明,相同条件下Ag/TiO2表现出比TiO2更高的催化活性. EPR分析表明,对于Ag/TiO2,UV照射后Ag表面有活性物种生成,在TiO2上有活性中心表相Ti3+生成.光生电子通过表相Ti3+向Cr6+传递电子是Cr6+光催化还原的速度控制步骤.较多的表相Ti3+参与还原反应是Ag/TiO2表现出较高催化活性的主要原因,担载Ag上积聚光生电子的较强流动性对反应也起到一定促进作用.  相似文献   

17.
Ultraviolet absorption spectra in the range 300-200 K were used to study the composition and structure of complexes formed in solutions by the fluorinated amine (4-CF3C6F4)2NH as a proton donor with dibutylamine. A program is developed for quantitative analysis of sets of the spectra of equilibrium multicomponent systems, that allow to find spectral and thermodynamic characteristics of the individual components. In the systems in study, 1:1 and 1:2 fluorinated diamine-dibutylamine complexes are formed. The first of them in a molecular complex with an NHN hydrogen bond, and the second is an ionic proton-transfer complex. The equilibrium constants between the complexes and the free molecules are found, the enthalpies and entropies of formation of both complexes are found, and the spectra of the complexes are measured.  相似文献   

18.
Earth-abundant metal complexes have been attracting increasing attention in the field of photo(redox)catalysis. In this work, the synthesis and full characterisation of four new heteroleptic CuI complexes are reported, which can work as photosensitizers. The complexes bear a bulky diphosphine (DPEPhos=bis[(2-diphenylphosphino)phenyl] ether) and a diimine chelating ligand based on 1-benzyl-4-(quinol-2′yl)-1,2,3-triazole. Their absorption has a relative maximum in the visible-light region, up to 450 nm. Thus, their use in photocatalytic systems for the reduction of CO2 with blue light in combination with the known catalyst [NiII(cyclam)]Cl2 was tested. This system produced CO as the main product through visible light (λ=420 nm) with a TON up to 8 after 4 hours. This value is in line with other photocatalytic systems using the same catalyst. Nevertheless, this system is entirely noble-metal free.  相似文献   

19.
Photosystem I (PSI), a photoactive protein complex that participates in the light reactions of natural photosynthesis, can exhibit photocatalytic capabilities when incorporated to electrochemical systems. Here we present a simulation for the photoelectrochemical behavior of an electrode modified with a monolayer of Photosystem I complexes during photochronoamperometric experiments in which the electrode is exposed to periods of darkness and irradiation. A kinetic model is derived from conservation statements for the various oxidation states of the reaction centers of PSI complexes and electrochemical mediators within the system. The kinetic parameters that dictate the performance of the simulation are extracted from experimental data and the resulting simulation is capable of predicting the photochronoamperometric behavior of the system over a range of overpotentials. The model is used to investigate the various contributions to the photocurrent production of the system as well as the effects of the orientation of PSI complexes adsorbed to the electrode surface.  相似文献   

20.
Sol-gel TiO2 thin films were autoclaved under various water/ethanol atmospheres. The microstructural, morphological and photocatalytic properties of the films were studied. The photocatalytic activity of the films appears closely related to crystallization states. It is shown that nanocrystallized porous films can be produced in a temperature range compatible with titania deposition on polymer materials. Consequently, photocatalytic films could successfully be prepared on polycarbonate and polymethylmetacrylate substrates. The autoclaved film properties are described and discussed with respect to sol-gel parameters and autoclaving conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号