首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new excited state intramolecular proton transfer chromophore of naphthalimide (NI) conjugated 2-(2-hydroxyphenyl) benzothiazole () was prepared which shows red shifted absorption and long-lived triplet excited states.  相似文献   

2.
The kinetics of electron transfer for the reactions cis-[Ru(IV)(bpy)2(py)(O)]2+ + H+ + [Os(II)(bpy)3]2+ <==> cis-[Ru(III)(bpy)2(py)(OH)]2+ + [Os(III)(bpy)3]3+ and cis-[Ru(III)(bpy)2(py)(OH)]2+ + H+ + [Os(II)(bpy)3]2+ <==> cis-[Ru(II)(bpy)2(py)(H2O)]2+ + [Os(III)(bpy)3]3+ have been studied in both directions by varying the pH from 1 to 8. The kinetics are complex but can be fit to a double "square scheme" involving stepwise electron and proton transfer by including the disproportionation equilibrium, 2cis-[Ru(III)(bpy)2(py)(OH)]2+ <==> (3 x 10(3) M(-1) x s(-1) forward, 2.1 x 10(5) M(-1) x s(-1) reverse) cis-[Ru(IV)(bpy)2(py)(O)]2+ + cis-[Ru(II)(bpy)2(py)(H2O)]2+. Electron transfer is outer-sphere and uncoupled from proton transfer. The kinetic study has revealed (1) pH-dependent reactions where the pH dependence arises from the distribution between acid and base forms and not from variations in the driving force; (2) competing pathways involving initial electron transfer or initial proton transfer whose relative importance depends on pH; (3) a significant inhibition to outer-sphere electron transfer for the Ru(IV)=O2+/Ru(III)-OH2+ couple because of the large difference in pK(a) values between Ru(IV)=OH3+ (pK(a) < 0) and Ru(III)-OH2+ (pK(a) > 14); and (4) regions where proton loss from cis-[Ru(II)(bpy)2(py)(H2O)]2+ or cis-[Ru(III)(bpy)2(py)(OH)]2+ is rate limiting. The difference in pK(a) values favors more complex pathways such as proton-coupled electron transfer.  相似文献   

3.
Photoisomeric transformations in ruthenium polypyridyl complexes have been rarely reported. Herein we report the geometrical transformation of cyclometalated trans-[Ru(tpy)(PAD)(OH(2))](+) ([1](+)) to the cis-[Ru(tpy)(PAD)(OH(2))](+) ([1a](+)) (tpy = 2,2';6',2"-terpyridine, PAD = 2-(pyrid-2'-yl)acridine) isomer upon irradiation of visible light (λ ≥420 nm). Due to a proton-induced tautomeric equilibrium between the Ru-C bond and Ru═C coordination, the π* energy levels of PADH are lower than those of tpy by 12.61 and 12.24 kcal mol(-1), respectively, in [1](+) and [1a](+). Isomers [1](+) and [1a](+) both act as catalytic oxygen-evolving complexes (OECs) chemically as well as electrochemically.  相似文献   

4.
Proton-coupled electron transfer (PCET) is of fundamental importance for small-molecule activation processes, such as water splitting, CO(2)-reduction, or nitrogen fixation. Ideally, energy-rich molecules such as H(2), CH(3)OH, or NH(3) could be generated artificially using (solar) light as an energy input. In this context, PCETs originating directly from electronically excited states play a crucial role. A variety of transition-metal complexes have been used recently for fundamental investigations of this important class of reactions, and the key findings of these studies are reviewed in this article. The present minireview differs from other reviews on the subject of PCET in that it focuses specifically on reactions occurring directly from electronically excited states.  相似文献   

5.
All higher life forms use oxygen and respiration as their primary energy source. The oxygen comes from water by solar-energy conversion in photosynthetic membranes. In green plants, light absorption in photosystem II (PSII) drives electron-transfer activation of the oxygen-evolving complex (OEC). The mechanism of water oxidation by the OEC has long been a subject of great interest to biologists and chemists. With the availability of new molecular-level protein structures from X-ray crystallography and EXAFS, as well as the accumulated results from numerous experiments and theoretical studies, it is possible to suggest how water may be oxidized at the OEC. An integrated sequence of light-driven reactions that exploit coupled electron-proton transfer (EPT) could be the key to water oxidation. When these reactions are combined with long-range proton transfer (by sequential local proton transfers), it may be possible to view the OEC as an intricate structure that is "wired for protons".  相似文献   

6.
7.
The influence of solvent, temperature, and viscosity on the phototautomerization processes of a series of o-hydroxyarylbenzazoles was studied by means of ultraviolet-visible (UV-vis) absorption spectroscopy and steady-state and time-resolved fluorescence spectroscopy. The compounds studied were 2-(2'-hydroxyphenyl)benzimidazole (HBI), 2-(2'-hydroxyphenyl)benzoxazole (HBO), 2-(2'-hydroxyphenyl)benzothiazole (HBT), 2-(3'-hydroxy-2'-pyridyl)benzimidazole (HPyBI), and the new derivative 2-(3'-hydroxy-2'-pyridyl)benzoxazole (HPyBO), this one studied in neutral and acid media. All of these compounds undergo an excited-state intramolecular proton transfer (ESIPT) from the hydroxyl group to the benzazole N3 to yield an excited tautomer in syn conformation. A temperature- and viscosity-dependent radiationless deactivation of the tautomer has been detected for all compounds except HBI and HPyBI. We show that this radiationless decay also takes place for 2-(3-methyl-1,3-benzothiazol-3-ium-2-yl)benzenolate (NMeOBT), the N-methylated analog of the tautomer, whose ground-state structure has anti conformation. In ethanol, the radiationless decay shows intrinsic activation energy for HPyBO and HBO; however, it is barrierless for HBT and NMeOBT and controlled instead by the solvent dynamics. The relative efficiency of the radiationless decay in the series of molecules studied supports the hypothesis that this transition is connected with a charge-transfer process taking place in the tautomer, its efficiency being related to the strength of the electron donor (dissociated phenol or pyridinol moiety) and electron acceptor (protonated benzazole). We propose that the charge transfer is associated with a large-amplitude conformational change of the tautomer, the process leading to a nonfluorescent charge-transfer intermediate. The previous ESIPT step generates the structure with the suitable redox pair to undergo the charge-transfer process; therefore, an excited-state intramolecular coupled proton and charge transfer takes place for these compounds.  相似文献   

8.
Intermolecular electron transfer (ELT) from a series of naphthalene derivatives (NpD) in the higher triplet excited states (T(n)) to carbon tetrachloride (CCl(4)) in Ar-saturated acetonitrile was observed using the two-color two-laser flash photolysis method. The ELT efficiency depended on the driving force of ELT. Since the ELT from the T(n) state occurred competitively with the internal conversion (IC, T(n) --> T(1)) and the triplet energy transfer (ENT), the ELT became apparent only when sufficient free energy change of ELT was attained. On the other hand, ELT from the T(1) state was not observed, although ELT from the T(1) state with sufficiently long lifetime has a slightly exothermic driving force. The fast ELT from the T(n) state and lack of the reactivity of the T(1) state were explained well by the "sticky" dissociative electron-transfer model based on one-electron reductive attachment to CCl(4) leading to the C-Cl bond cleavage.  相似文献   

9.
10.
By using gamma-irradiation in the presence of thiocyanate ions, we have generated guanyl radicals in plasmid DNA. These can be detected by using an Escherichia coli base excision repair endonuclease to convert their stable end products to strand breaks. The yield of enzyme-sensitive sites is strongly attenuated by the presence of micromolar concentrations of one of a series of singly substituted phenols, and it is possible to derive bimolecular rate constants for the reduction of DNA guanyl radicals by these phenols. More strongly reducing phenols were found to react more rapidly. This electron-transfer reaction also involves a proton transfer. By comparing the expected energetics of the reaction with the observed rate constants, the electron transfer is found to be mechanistically coupled with the proton transfer.  相似文献   

11.
Photosensitization by drugs is directly related with the excited species and the photoinduced processes arising from interaction with UVA light. In this context, the ability of gefitinib (GFT), a tyrosine kinase inhibitor (TKI) used for the treatment of a variety of cancers, to induce phototoxicity and photooxidation of proteins has recently been demonstrated. In principle, photodamage can be generated not only by a given drug but also by its photoactive metabolites that maintain the relevant chromophore. In the present work, a complete study of O-desmorpholinopropyl gefitinib (GFT-MB) has been performed by means of fluorescence and ultrafast transient absorption spectroscopies, in addition to molecular dynamics (MD) simulations. The photobehavior of the GFT-MB metabolite in solution is similar to that of GFT. However, when the drug or its metabolite are in a constrained environment, i.e. within a protein, their behavior and the photoinduced processes that arise from their interaction with UVA light are completely different. For GFT in complex with human serum albumin (HSA), locally excited (LE) singlet states are mainly formed; these species undergo photoinduced electron transfer with Tyr and Trp. By contrast, since GFT-MB is a phenol, excited state proton transfer (ESPT) to form phenolate-like excited species might become an alternative deactivation pathway. As a matter of fact, the protein-bound metabolite exhibits higher fluorescence yields and longer emission wavelengths and lifetimes than GFT@HSA. Ultrafast transient absorption measurements support direct ESPT deprotonation of LE states (rather than ICT), to form phenolate-like species. This is explained by MD simulations, which reveal a close interaction between the phenolic OH group of GFT-MB and Val116 within site 3 (subdomain IB) of HSA. The reported findings are relevant to understand the photosensitizing properties of TKIs and the role of biotransformation in this type of adverse side effects.

The photoinduced processes from the protein-bound GFT result in electron transfer, while those related with the photoactive metabolite GFT-MB induce excited state proton transfer to form phenolate-like excited species.  相似文献   

12.
Electrons and protons are the main actors in play in proton coupled electron transfer (PCET) reactions, which are fundamental in many biological (i.e., photosynthesis and enzymatic reactions) and electrochemical processes. The mechanism, energetics and kinetics of PCET reactions are strongly controlled by the coupling between the transferred electrons and protons. Concerted PCET reactions are classified according to the electronical adiabaticity degree of the process. To discriminate among different mechanisms, we propose a new analysis based on the use of electron density based indexes. We choose, as test case, the 3-Methylphenoxyl/phenol system in two different conformations to show how the proposed analysis is a suitable tool to discriminate between the different degree of adiabaticity of PCET processes. The very low computational cost of this procedure is extremely promising to analyze and provide evidences of PCET mechanisms ruling the reactivity of many biological and catalytic systems.  相似文献   

13.
The ground- and excited-state intramolecular proton transfer (GSIPT and ESIPT) for 8-hydroxy-4H-naphthalen-1-one (HNA), 5-hydroxynaphthoquinone (HNQ), 1-hydroxy-anthraquione (HAQ), 7-hydroxy-1-indenone (7HIN), 5,8-dihydroxynaphthoquinone (DHNQ) and 4,9-dihydroxyperylene-3,10-quinone (DHP) are studied at B3LYP/6-31G(d,p) and TD B3LYP/6-31G(d,p) level. The calculated results show that the PES of GSIPT for HNA, HNQ and HAQ exhibit a single minimum in the enol zone, while for 7-HIN, DHNQ and DHP exhibit a double minimum and a high barrier between the two minima. The barrierless ESIPT for HNA is predicted, however, the PES of ESIPT for HNQ, HAQ, 7HIN, DHNQ and DHP exhibit a high barrier in the S1 tautomerism.  相似文献   

14.
15.
Electronic factors influencing the photoluminescence properties and rates of excited state intramolecular proton transfer (ESIPT) reaction of o-hydroxy derivatives of 2,5-diphenyl-1,3,4-oxadiazole have been studied. The potential of these molecules as emissive and electron transport materials in designing improved organic light emitting diodes (OLEDs) has been studied by analyzing possible reasons for the unusually high Stokes shifts and ESIPT reaction rates. Time-dependent density functional theory (TDDFT) methods have been used to calculate the ground and excited state properties of the phototautomers that are the ESIPT reaction products. We study the relative effect of electron-withdrawing substituents on the proton-acceptor moiety and predict that the lowest ESIPT rate (1.9 x 10(11) s(-1)) is achieved with a dimethylamino substituent and that the Stokes shifts are around 11 000 cm(-1) for all three derivatives.  相似文献   

16.
Efficient energy transfer from Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine, denotes the excited state) to 3,6-disubstituted tetrazines [R(2)Tz: R = Ph (Ph(2)Tz), 2-chlorophenyl [(ClPh)(2)Tz], 2-pyridyl (Py(2)Tz)] occurs to yield the triplet excited states of tetrazines ((3)R(2)Tz(*)), which have longer lifetimes and higher oxidizing ability as compared with those of Ru(bpy)(3)(2+). The dynamics of hydrogen-transfer reactions from NADH (dihydronicotinamide adenine dinucleotide) analogues has been examined in detail using (3)R(2)Tz(*) by laser flash photolysis measurements. Whether formal hydrogen transfer from NADH analogues to (3)R(2)Tz(*) proceeds via a one-step process or sequential electron and proton transfer processes is changed by a subtle difference in the electron donor ability and the deprotonation reactivity of the radical cations of NADH analogues as well as the electron-acceptor ability of (3)R(2)Tz(*) and the protonation reactivity of R(2)Tz(*)(-). In the case of (3)Ph(2)Tz(*), which is a weaker electron acceptor than the other tetrazine derivatives [(ClPh)(2)Tz; Py(2)Tz], direct one-step hydrogen transfer occurs from 10-methyl-9,10-dihydroacridine (AcrH(2)) to (3)Ph(2)Tz(*) without formation of the radical cation (AcrH(2)(*)(+)). The rate constant of the direct hydrogen transfer from AcrH(2) to (3)Ph(2)Tz(*) is larger than that expected from the Gibbs energy relation for the rate constants of electron transfer from various electron donors to (3)Ph(2)Tz(*), exhibiting the primary deuterium kinetic isotope effect. On the other hand, hydrogen transfer from 9-isopropyl-10-methyl-9,10-dihydroacridine (AcrHPr(i)) and 1-benzyl-1,4-dihydronicotinamide (BNAH) to (3)R(2)Tz(*) occurs via sequential electron and proton transfer processes, when both the radical cations and deprotonated radicals of NADH analogues are detected by the laser flash photolysis measurements.  相似文献   

17.
18.
The bent d(0) titanium metallocene (Cp)(2)Ti(NCS)(2) exhibits an intense phosphorescence from a ligand-to-metal charge transfer triplet excited state at 77 K in an organic glass substrate and a poly(methyl methacrylate) plastic substrate. Quantum chemical calculations and spectroscopic studies show that the orbital parentage of this triplet state arises from the promotion of an electron from an essentially nonbonding symmetry adapted pi molecular orbital located on the NCS(-) ligands to a d(z)2-(y)2 orbital located on the Ti metal. Standard infrared spectroscopy of (Cp)(2)Ti(NCS)(2) in its ground electronic state at 77 K reveals a pair of closely spaced absorptions at (2072 cm(-1), 2038 cm(-1))(glass) and (2055 cm(-1), 2015 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretching modes of the two coordinated NCS(-) ligands. Low-temperature (77 K) time-resolved infrared spectroscopy that accesses the phosphorescing triplet excited state on the ns time scale shows an IR bleach that is coincident with the two ground state CN stretching bands and an associated grow-in of a pair of new IR bands at slightly lower energies (2059 cm(-1), 2013 cm(-1))(glass) and (2049 cm(-1), 1996 cm(-1))(plastic) that are assigned, respectively, to the symmetric and antisymmetric CN stretches in the emitting triplet state. These transient IR bands decay with virtually identical lifetimes to those observed for the phosphorescence decays when measured under identical experimental conditions. Singular value decomposition analysis of the time-resolved infrared data shows that the observed transient IR features arise from the same electronic manifold as measured through luminescence studies. The close similarity between the ground state and excited-state CN stretching bands in (Cp)(2)Ti(NCS)(2) indicates that symmetry breaking does not occur in forming the charge-transfer triplet excited-state manifold; i.e., electron density is withdrawn from a delocalized pi MO spread across both NCS(-) ligands. Calculations at several levels of theory reveal a delocalized ligand-to-metal charge transfer excited triplet manifold. These calculations closely reproduce the relative intensity ratios and frequencies of the symmetric and antisymmetric transient infrared vibrations in the CN region. This study is the first time-resolved infrared investigation of a ligand-to-metal charge-transfer excited state and the first to be performed at cryogenic temperatures in thin-film organic glass and plastic substrates.  相似文献   

19.
The complex cis-[(bpy)2Ru
2]4+ (bpy is 2,2′-bipyridine) has been prepared by methylation of (bpy)2Ru
2]2+. Electrochemical studies show that introduction of the bound pyridinium group creates a chemically attached electron acceptor site (E1/2 = ?0.76 V in 0.1 M [N(n-C4H9)4]PF6-acetonitrile versus the SSCE). Evidence for a low-lying dπ — π*
charge transfer (CT) state has been obtained by the appearance of a low energy emission at λmax 680 nm in ecetonitrile (τ0 = 104 ns) and for an upper dπ — π* (bpy) state by a higher energy emission at 580 nm in a methanol glass at 77 K (τ0 = 7.59 μs). Both emissions appear in a water—ethylene glycol solution containing 5% by weight polyvinyl alcohol at room temperature.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号