共查询到20条相似文献,搜索用时 26 毫秒
1.
2.
Charbonnière L Mameri S Kadjane P Platas-Iglesias C Ziessel R 《Inorganic chemistry》2008,47(9):3748-3762
A series of three ligands designed for the formation of water-soluble luminescent lanthanide complexes is described. All ligands are based on a 6'-carboxy-2,2':6',2'-terpyridine framework linked via a methylene bridge to n-butylamine. The second negatively charged arm consists of a 6-carboxy-2-methylenepyridine for L1, a 6'-carboxy-6-methylene-2,2'-bipyridine for L2, and a 6'-carboxy-6-methylene-2,2':6',2'-terpyridine for L3. The photophysical properties of the Eu and Tb complexes were studied in aqueous solutions by means of absorption spectroscopy and steady-state and time-resolved luminescence spectroscopy. Luminescence excited-state lifetimes were recorded and led to the determination of two water molecules in the first coordination sphere. The europium complexes were characterized by means of (1)H NMR spectroscopy in D 2O and DFT calculations performed at the B3LYP level both in vacuo and in aqueous solution. Finally, the influence of different phosphorylated anions such as HPO 4 (2-), ATP (4-), ADP (3-), and AMP (2-) on the luminescence properties of the [Eu L X (H 2O) 2] (+) complexes ( X = 1-3) was investigated in buffered aqueous solutions (0.01 M TRIS, pH 7.0), showing a significant interaction of ATP (4-) with [Eu( L2)(H 2O) 2] (+). The coordination of anions was understood in terms of partial decomplexation of one arm of the ligands and water displacement, with formation of ternary species, and it was rationalized on the basis of the structural models of the complexes obtained from DFT calculations. 相似文献
3.
Andreiadis ES Imbert D Pécaut J Demadrille R Mazzanti M 《Dalton transactions (Cambridge, England : 2003)》2012,41(4):1268-1277
Two tridentate pyridine-tetrazolate ligands (H(2)pytz and H(2)pytzc), analogues of the well-known dipicolinate (H(2)dpa) ligand, have been synthesized in a straightforward manner and used for lanthanide(III) coordination. The structures of the resulting tris-ligand complexes were determined in solution ((1)H-NMR), where they remain undissociated, as well as in the solid state (X-ray diffraction). The solubility of these anionic complexes can be easily tuned by changing the countercation. The bis-tetrazolate-pyridine ligand H(2)pytz sensitizes very efficiently both the visible and near-IR emission of the lanthanides, with unusually high luminescence quantum yields in solid state (61% and 65% for Eu and Tb, respectively, and 0.21% for Nd) and in water (63% for Tb and 18% for Eu). Furthermore, the absorption window of the complexes is significantly extended towards the visible region up to 330 nm. The results show that the bis-tetrazolate-pyridine ligand provides a very attractive alternative to the classic dipicolinate ligand. 相似文献
4.
5.
de Bettencourt-Dias A Barber PS Bauer S 《Journal of the American Chemical Society》2012,134(16):6987-6994
A new water-soluble Pybox ligand, 1, has been synthesized and found to crystallize in the monoclinic P2(1)/n space group with unit cell parameters a = 6.0936(1) ?, b = 20.5265(4) ?, c = 12.0548(2) ?, and β = 90.614(1)°. In the crystal, a water molecule is bound through hydrogen-bonding interactions to the nitrogen atoms of the oxazoline rings. This ligand was used to complex a variety of lanthanide ions, opening up new avenues for luminescence and catalysis in aqueous environment. These complexes are highly luminescent in aqueous solutions, in acetonitrile, and in the solid state. Aqueous quantum yields are high at 30.4% for Eu(III), 26.4% for Tb(III), 0.32% for Yb(III), and 0.11% for Nd(III). Er(III) did not luminesce in water, but an emission efficiency of 0.20% could be measured in D(2)O. Aqueous emission lifetimes were also determined for the visible emitting lanthanide ions and are 1.61 ms for Eu(III) and 1.78 ms for Tb(III). Comparing emission lifetimes in deuterated and nondeuterated water indicates that no water molecules are coordinated to the metal ion. Speciation studies show that three species form successively in solution and the log β values are 5.3, 9.6, and 13.8 for Eu(III) and 5.3, 9.2, and 12.7 for Tb(III) for 1:1, 2:1, and 3:1 ligand to metal ratios, respectively. 相似文献
6.
Cross JP Lauz M Badger PD Petoud S 《Journal of the American Chemical Society》2004,126(50):16278-16279
Generation 3 PAMAM dendrimers functionalized with 2,3-naphthalimide chromophoric groups on the end branches were synthesized, and the formation of Eu3+ polymetallic complexes was investigated. The luminescence properties of these complexes upon binding were fully characterized. On addition of Eu3+ to the dendrimer solution, lanthanide luminescence appears. The formation of a luminescent species corresponding to a dendrimer:lanthanide ratio of 1:8 was determined by luminescence batch titration and indicated by the maximum of Eu3+ emission. This indicates an overall average coordination number of 7.5 around each lanthanide metal cation. This is the first report of such characterization in the literature. Luminescence lifetimes indicate that the metal cation is well protected from nonradiative deactivation by the dendritic structure. Despite the limited efficiency of the sensitization of Eu3+, the absolute quantum yield being 0.0006, the good protection of the eight lanthanide cations bound in the dendrimer structure and the high absorptivity leads to the red emission from Eu3+ that is easily observed in solution under irradiation with 354 nm UV light. 相似文献
7.
The syntheses of three new ligands (L1-3), which are based upon a DO3A core and appended with additional receptor sites for metal cations, are described, together with their corresponding Eu(III) complexes (Eu-L1-3). The complexes are visibly luminescent in aqueous solution, following sensitization via the pyridine chromophore, showing characteristic narrow line-like emission from Eu(III). The luminescence properties show that water is effectively excluded from the inner coordination sphere of europium (q = 0). Each of the complexes showed perturbed luminescence properties upon addition of a variety of d-block metal ions. For example, emission quenching was observed for each complex following addition of Cr(III) and Cu(II). Selectivity towards Hg(II) (over Cd(II), Cu(II) and Zn(II)) was demonstrated with Eu-L3, which possesses a receptor site incorporating a softer thiophene moiety. More specifically, Hg(II) binding resulted in changes in the form of the steady state emission spectrum, together with a corresponding reduction of the luminescence lifetime in water, which can be attributed to an increase in inner sphere hydration (q = 2) and thus enhanced non-radiative deactivation of the 5D0 state by proximate O-H oscillators. 相似文献
8.
Luminescent pentanuclear tetra-decker Ln(III) complexes [Eu5L4(OH)2(NO3)4(H2O)2].NO3.3H2O , [Nd5L4(OH)2(NO3)5MeOH].3MeOH.2H2O and [Eu5L4(CF3SO3)4(MeO)2(H2O)4].CF3SO3.H2O are formed from Ln(NO3)3.6H2O (Ln = Eu (1), Nd (2)) and Eu(CF3SO3)3, respectively (H2L = N,N'-bis(5-bromo-3-methoxysalicylidene)phenylene-1,2-diamine). 相似文献
9.
10.
Katia NN Lecointre A Regueiro-Figueroa M Platas-Iglesias C Charbonnière LJ 《Inorganic chemistry》2011,50(5):1689-1697
The synthesis of ligand L(P)H(8), based on a 2,6-bispyrazolyl-pyridine scaffold functionalized by iminobismethylenephosphonate functions, is described and its pK values were determined by a combination of pH-spectrophotometric titrations and potentiometry. The interaction of L(P) with Tb(3+) was investigated in water (0.01 M TRIS/HCl pH = 7.0) by means of UV-vis and fluorescence titration experiments and evidenced the formation of at least three species with 1:1; 1:2, and 2:1 M-L ratios, the 1:1 complex appearing as particularly stable under these conditions (log K(cond) > 8). Na(4)[LnL(P)H] complexes (Ln = Eu and Tb) were prepared and characterized by elemental analysis, IR spectroscopy, and electrospray mass spectrometry. Their photophysical properties were investigated in aqueous solutions, revealing an excellent shielding of the Ln cations from the solvent environment (no water molecules in the first coordination sphere), very long luminescence lifetimes (τ(H(2)(O)) = 1.50 and 3.28 ms, respectively, for Eu and Tb) and reasonable luminescent quantum yields (?(H(2)(O)) = 2.4 and 37%, respectively, for Eu and Tb). Using fetal bovine serum as a model for biological media showed the Tb complex to remain luminescent in these conditions. The structure of the europium complex was studied by means of density functional theory (DFT) modeling, confirming the wrapping of the ligand around the cation, and the very good shielding of the coordinated Ln cation. The conditional stability constant for the formation of the Tb complex with L(P) was determined by competition experiments with EDTA and monitored by fluorescence spectroscopy (log K(TbL(P)cond) = 14.1 ± 0.3, 0.01 M TRIS/HCl, pH = 7.4) and was used to determine the thermodynamic constant (log K(TbL(P)) = 20.4 ± 0.4). A systematic comparison with ligand L(C), in which phosphonate functions are replaced by carboxylate ones, is made throughout the study, highlighting the large interest of the introduction of phosphonate moieties to obtain biologically stable luminescent lanthanide complexes. 相似文献
11.
This article highlights some of the recent developments in the use of responsive cyclen based lanthanide luminescent devices, focusing on Eu(III), Tb(III), Nd(III) and Yb(III) complexes, where the photophysical properties, such as the excited state lifetimes, quantum yield/intensity and emission polarisation are modulated by the local chemical environment, e.g. ions and molecules, or through self-assembly of either f-f or mixed f-d cyclen complexes. 相似文献
12.
The synthesis, X-ray structure, stability, and photophysical properties of several trivalent lanthanide complexes formed from two differing bis-bidentate ligands incorporating either alkyl or alkyl ether linkages and featuring the 1-hydroxy-2-pyridinone (1,2-HOPO) chelate group in complex with Eu(III), Sm(III), and Gd(III) are reported. The Eu(III) complexes are among some of the best examples, pairing highly efficient emission (Phi tot (Eu) approximately 21.5%) with high stability (pEu approximately 18.6) in aqueous solution, and are excellent candidates for use in biological assays. A comparison of the observed behavior of the complexes with differing backbone linkages shows remarkable similarities, both in stability and photophysical properties. Low temperature photophysical measurements for a Gd(III) complex were also used to gain insight into the electronic structure and were found to agree with corresponding time-dependent density functional theory (TD-DFT) calculations for a model complex. A comparison of the high resolution Eu(III) emission spectra in solution and from single crystals also revealed a more symmetric coordination geometry about the metal ion in solution due to dynamic rotation of the observed solid state structure. 相似文献
13.
Li HF Yan PF Chen P Wang Y Xu H Li GM 《Dalton transactions (Cambridge, England : 2003)》2012,41(3):900-907
A new bis-β-diketone, 3,3'-bis(4,4,4-trifluoro-1,3-dioxobutyl)biphenyl (BTB), has been designed and prepared for the synthesis of a series of dinuclear lanthanide complexes [Ln(2)(BTB)(3)(C(2)H(5)OH)(2)(H(2)O)(2)] [Ln = Eu (1), Gd (2)], [Ln(2)(BTB)(3)(DME)(2)] [Ln = Nd (3), Yb (4); DME = ethylene glycol dimethyl ether] and [Eu(2)(BTB)(3)(L)(2)] [L = 2,2-bipydine (5); 1,10-phenanthroline (6); 4,7-diphenyl-1,10-phenanthroline (7)]. Complexes 1-7 have been characterized by various spectroscopic techniques and their photophysical properties are investigated. X-ray crystallographical analysis reveals that complexes 1, 3 and 4 adopt triple-stranded dinuclear structures which are formed by three bis-bidentate ligands with two lanthanide ions. The complexes 1 and 3-7 display strong visible red or NIR luminescence upon irradiation at ligand band around 372 nm, depending on the choice of the lanthanide. The solid-state photoluminescence quantum yields and the lifetimes of Eu(3+) complexes are determined and described. 相似文献
14.
15.
Hairpin-shaped heterometallic luminescent lanthanide complexes for DNA intercalative recognition 总被引:2,自引:0,他引:2
Glover PB Ashton PR Childs LJ Rodger A Kercher M Williams RM De Cola L Pikramenou Z 《Journal of the American Chemical Society》2003,125(33):9918-9919
Luminescent Ln-Pt2 metallohairpin complexes have been developed, and their intercalative recognition with DNA has been demonstrated with linear dichroism spectroscopy. The heterotrimetallic complexes were formed in a one-step reaction, by assembly of an aminopolycarboxylate ligand, a platinum terpyridine unit, and the lanthanide salt. The metallohairpin complexes bear a neutral lanthanide moiety and two positively charged platinum-containing intercalating units. The Nd(III) analogues are luminescent in the near infrared, and this near-IR luminescence is retained upon binding to DNA. The DNA recognition was demonstrated by linear dichroism spectroscopy. The linear dichroism spectra suggested that the complexes bind perpendicular to the DNA helical axis, confirming intercalative recognition accompanied by dramatic stiffening of DNA, which suggests bis-intercalation of the complex. 相似文献
16.
A series of heterobimetallic dianionic guanidinate complexes of lanthanide and lithium, [Li(THF)(DME)]3Ln[μ-η2η1(iPrN)2C(NC6H4p-R)]3 [R=Cl, Ln=Nd (I), Y (II), La (III); R=H, Ln=Nd (IV)] were synthesized and fully characterized. These complexes were found to be highly efficient precatalysts for the addition of various primary and secondary amines, and aromatic and aliphatic diamines to carbodiimides to give the corresponding monoguanidine and biguanidine derivatives under mild condition (at 25-60 °C), which provides an efficient way for the synthesis of biguanidines compounds. The activity depends on the central metals and ligands: La>Nd>Y for the metals and [(iPrN)2C(NC6H4p-Cl)]2−>[(iPrN)2C(NC6H5)]2− for the ligands were observed. 相似文献
17.
Luminescent lanthanide complexes have been actively studied as selective anion receptors for the past two decades. Ln(iii) complexes, particularly of europium(iii) and terbium(iii), offer unique photophysical properties that are very valuable for anion sensing in biological media, including long luminescence lifetimes (milliseconds) that enable time-gating methods to eliminate background autofluorescence from biomolecules, and line-like emission spectra that allow ratiometric measurements. By careful design of the organic ligand, stable Ln(iii) complexes can be devised for rapid and reversible anion binding, providing a luminescence response that is fast and sensitive, offering the high spatial resolution required for biological imaging applications. This review focuses on recent progress in the development of Ln(iii) receptors that exhibit sufficiently high anion selectivity to be utilised in biological or environmental sensing applications. We evaluate the mechanisms of anion binding and sensing, and the strategies employed to tune anion affinity and selectivity, through variations in the structure and geometry of the ligand. We highlight examples of luminescent Ln(iii) receptors that have been utilised to detect and quantify specific anions in biological media (e.g. human serum), monitor enzyme reactions in real-time, and visualise target anions with high sensitivity in living cells.This minireview highlights advances in anion binding and sensing using luminescent lanthanide(iii) complexes. 相似文献
18.
Artemyev M Kisiel D Abmiotko S Antipina MN Khomutov GB Kislov VV Rakhnyanskaya AA 《Journal of the American Chemical Society》2004,126(34):10594-10597
DNA molecules are useful building blocks and nanotemplates for controllable fabrication of various bioinorganic nanostructures due to their unique physical-chemical properties and recognition capabilities and the synthetic availability of desired nucleotide sequences and length. We have synthesized novel DNA complexes with positively charged, highly luminescent CdSe nanorods that can be self-organized into filamentary, netlike, or spheroidal nanostructures. DNA-CdSe-nanorod filaments possess strongly linearly polarized photoluminescence due to the unidirectional orientation of nanorods along the filaments. 相似文献
19.
Castano-Briones MM Bassett AP Meason LL Ashton PR Pikramenou Z 《Chemical communications (Cambridge, England)》2004,(24):2832-2833
Luminescent lanthanide racks are formed in solution through supramolecular assembly of lanthanide ions with a rigid bis-didentate sensitiser ligand and octadentate aminopolycarboxylate ligands. 相似文献
20.
Bassett AP Van Deun R Nockemann P Glover PB Kariuki BM Van Hecke K Van Meervelt L Pikramenou Z 《Inorganic chemistry》2005,44(18):6140-6142
Near-infrared emitting complexes of Nd(III), Er(III), and Yb(III) based on hexacoordinate lanthanide ions with an aryl functionalized imidodiphosphinate ligand, tpip, have been synthesized and fully characterized. Three tpip ligands form a shell around the lanthanide with the ligand coordinating via the two oxygens leading to neutral complexes, Ln(tpip)3. In the X-ray crystal structures of Er(III) and Nd(III) complexes there is evidence of CH-pi interactions between the phenyl groups. Photophysical investigations of solution samples of the complexes demonstrate that all complexes exhibit relatively long luminescence lifetimes in nondeuteurated solvents. Luminescence studies of powder samples have also been recorded for examination of the properties of NIR complexes in the solid state for potential material applications. The results underline the effective shielding of the lanthanide by the twelve phenyl groups of the tpip ligands and the reduction of high-energy vibrations in close proximity to the lanthanide, both features important in the design of NIR emitting lanthanide complexes. 相似文献