首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An azo derivative was synthesized by coupling diazotized 2-amino-3-carbethoxy-4,5-dimethylthiophene with 2-naphthol and this new ligand formed a series of metal complexes with Mn(II), Co(II), Ni(II), Cu(II) and Zn(II) salts. These complexes were characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility measurements, UV-Visible, IR and 1H NMR spectral data. Analytical data revealed that all the complexes exhibited 1: 1 metal-ligand ratio. Spectral studies showed that the ligand existed in an internally hydrogen bonded azo-enol form rather than the keto-hydrazone form and coordinated to the metal ion in a tridentate fashion. On the basis of electronic spectral data and magnetic susceptibility measurements, suitable geometry was proposed for each complex. The ligand and its cobalt(II) complex were subjected to X-ray diffraction study. The thermal behaviour of the ligand and its copper(II) complex was examined by thermogravimetry. The ligand and its copper(II) and nickel(II) complexes were applied to silk fabric and their fastness properties were evaluated.  相似文献   

2.
Co(II), Ni(II), Cu(II) and Zn(II) complexes of the Schiff base derived from vanillin and dl-alpha-aminobutyric acid were synthesized and characterized by elemental analysis, IR, electronic spectra, conductance measurements, magnetic measurements, powder XRD and biological activity. The analytical data show the composition of the metal complex to be [ML(H(2)O)], where L is the Schiff base ligand. The conductance data indicate that all the complexes are non-electrolytes. IR results demonstrate the tridentate binding of the Schiff base ligand involving azomethine nitrogen, phenolic oxygen and carboxylato oxygen atoms. The IR data also indicate the coordination of a water molecule with the metal ion in the complex. The electronic spectral measurements show that Co(II) and Ni(II) complexes have tetrahedral geometry, while Cu(II) complex has square planar geometry. The powder XRD studies indicate that Co(II) and Cu(II) complexes are amorphous, whereas Ni(II) and Zn(II) complexes are crystalline in nature. Magnetic measurements show that Co(II), Ni(II) and Cu(II) complexes have paramagnetic behaviour. Antibacterial results indicated that the metal complexes are more active than the ligand.  相似文献   

3.
Complexes of manganese(II), cobalt(II), nickel(II), copper(II) and zinc(II) with a novel heterocyclic azo derivative, formed by coupling diazotized 2-amino-3-carbethoxy-4,5-dimethylthiophene with acetylacetone were synthesized and characterized on the basis of elemental analyses, molar conductance, magnetic susceptibility measurements, UV–vis, IR, 1H NMR and EPR spectral data. Spectral studies revealed that the ligand existed in an internally hydrogen bonded azo-enol form rather than the keto-hydrazone form and coordinated to the metal ion in a tridentate fashion. Analytical data revealed that all the complexes exhibited 1:1 metal–ligand ratio. On the basis of electronic spectral data and magnetic susceptibility measurements, suitable geometry was proposed for each complex. The nickel(II) complex has undergone facile transesterification reaction when refluxed in methanol for a long period. The ligand and the copper(II) complex were subjected to X-ray diffraction study. The electrochemical behaviour of copper(II) complex was investigated by cyclic voltammetry. The thermal behaviour of the same complex was also examined by thermogravimetry.  相似文献   

4.
Cobalt(II), nickel(II) and copper(II) complexes having the general composition M(L)X2 (where M = CO(II), Ni(II) and Cu(II), L = ligand, i.e. 3,4,12,13-tetraketo-2,5,11,14,19,20-hexaazatricyclo[13.3.1.1(6-10)]cosane; 1(19),6,8,10(20),15,17-hexaene and X stands for Cl-; NO3- and SO42-), have been prepared. The structure of the complexes has been elucidated by elemental analysis, molar conductance, magnetic susceptibility measurements, mass, IR, electronic and EPR spectral studies. The magnetic moment measurements of the complexes indicate that the metal ion is in high-spin state. On the basis of IR, electronic and EPR spectral studies an octahedral geometry was assigned for Co(II) and Ni(II) complexes whereas tetragonal geometry for Cu(II) complexes. This ligand and its complexes were also screened against bacteria and pathogenic fungi in vitro.  相似文献   

5.
A bidentate/tridentate 5-bromosalycilaldehyde isonicotinoylhydrazone Schiff base was synthesized by condensing 5-bromosalycilaldehyde with isonicotinoylhydrazine. Cu(II), Co(II), Ni(II), Mn(II) and Zn(II) complexes of this chelating ligand were synthesized using nitrates of these metals. The ligand and the complexes were characterized by elemental analysis, UV–Vis, IR and EPR spectroscopy, conductance and magnetic susceptibility measurements, fluorescence, cyclic voltammetry and thermogravimetric analysis. The ligand and Zn(II) complex exhibits solid-state photoluminescence at room temperature.  相似文献   

6.
The reaction products of metal(II) salts with 5-sulphamethoxazoleazo-3-phenyl-2-thioxo-4-thiazolidinone (H2L) have been characterized by elemental analyses, magnetic susceptibility, electronic, infrared and electron paramagnetic resonance spectral measurements. The spectral data suggest a square pyramidal structure for Cu(II) and Co(II) complexes and an octahedral for Ni(II) complexes. Various EPR parameters have been calculated. From the electron paramagnetic resonance and spectral data, the orbital reduction factors were calculated. In all case kperpendicular > kparallel which indicates a 2B1g ground state. These five coordinated complex of Cu(II) react further with pyridine forming six coordinate base adduct. The different modes of chelation of the ligand and stereochemistry around the metal ion are discussed.  相似文献   

7.
Tridentate chelate complexes of Co(II), Ni(II), and Cu(II) have been synthesized from 4-[N,N-bis-(3,5-dimethyl-pyrazolyl-1-methyl)]aminoantipyrine. Microanalytical data, UV-Vis, magnetic susceptibility, Infrared, 1H- 13C-NMR, mass, thermal gravimetric analysis and electron paramagnetic resonance (EPR) techniques were used to confirm the structures. The electronic absorption spectra and magnetic susceptibility measurements suggest a distorted octahedral geometry for the metal. EPR spectra of the copper(II) complex at 77?K confirm the distorted octahedral geometry of the copper(II) complex. The antimicrobial activities of the ligand and metal complexes against the bacteria such as Xanthomonas maltophilia, Chromobacterium violaceum, Acinetobacter, Staphylococci, Streptococci, and the fungus Candida albicans have been carried out. A comparative study of minimum inhibitory concentration values of the ligand and its metal complexes indicates that metal complexes exhibit higher antibacterial and antifungal activity than the free ligand. The electrochemical behavior of copper(II) complex was studied by cyclic voltammetry. The complexes show nuclease activity in the presence of oxidant.  相似文献   

8.
A series of four novel metal complexes of Co(II), Ni(II), Cu(II) and Zn(II) were synthesized from Schiff base derived from amoxicillin (AMX) and picolinaldehyde (PC2). The ligand and metal complexes were fully characterized by physical and spectral techniques such as elemental microanalysis, conductivity, FT-IR, 1H & 13C NMR, UV–vis, mass spectra, EPR, magnetic moment measurement, TGA/DTA, PXRD and antibacterial activity study. The spectroscopic study revealed 1:2 metal ligand ratio and coordination sites in the ligand for metal ions were evaluated by analysis of the spectral results. The surface morphology of the complexes was evaluated by SEM analysis. Molar conductivity implies non-electrolytic nature of the complexes. UV–vis. spectral study nicely supports octahedral geometry for Co(II) and Zn(II) complexes and tetrahedral geometry for Cu(II) complex. The kinetic parameters were extracted from Coats-Redfern equation. The PXRD study revealed nano-crystalline nature of Co(II), Ni(II) & Cu(II) complexes and amorphous nature of Zn(II) complex. The proposed geometry of the complexes was optimized by MM2 calculation supported in Cs-ChemOffice Ultra-11 program. The ligand and metal complexes were screened for antibacterial potency against four human pathogenic clinical strains of bacteria and the data revealed their promising antibacterial activity.  相似文献   

9.
Novel complexes of Mn(II), Fe(II), Co(II), Ni(II), Cu(II), Zn(II) and UO2(II) with a new Schiff base derived from 8-hydroxy-7-quinolinecarboxaldehyde and 2-aminoethanethiol (LH2) (system name: 2-(8-hydroxy-7-carboxalimino)ethanethiol.) have been prepared and characterized on the basis of analytical, thermal, magnetic moment, infrared, electronic, NMR and EPR spectral data. From the analytical, NMR and thermal data and stoichiometry of the complexes indicate that LH2 act as a dibasic tridentate ligand with ONS donors towards all the metal ions. The magnetic moment, electronic and EPR spectral data commensurate that the Mn(II), Fe(II), Ni(II) and UO2(II) complexes are dimeric with octahedral configuration while the Cu(II) and Zn(II) complexes are monomeric with square-planar and tetrahedral geometries, respectively. Various ligand field parameters Dq, B and beta for complex 5 was calculated. The complexes 3+4 have lower symmetries and the amount of distortion in terms of DT/DQ applying NSH "Hamiltonian Theory" has been evaluated which indicate that the complexes are moderately distorted.  相似文献   

10.
The Schiff base ligand derived from indole-3-carboxaldehyde(indal) and glycylglycine(glygly) were synthesized and characterized by elemental analysis, IR, electronic spectrum, 1H NMR and mass spectrum. Co(II), Ni(II) and Cu(II)–indal-glygly Schiff base complexes were synthesized and characterized by elemental analysis, molar conductance, IR, electronic spectra, magnetic measurements, ESR, electrochemical studies, TGA, DSC analysis, XRD and SEM. Conductance measurements indicate that the above complexes are 1:1 electrolytes. IR spectral data show that the ligand is tridentate and the binding sites are azomethine nitrogen, peptide nitrogen and carboxylato oxygen atoms. Electronic spectral measurements indicate tetrahedral geometry for Co(II) and Ni(II) complexes and square planar geometry for Cu(II) complex. Magnetic measurements show weak ferromagnetic behaviour for Co(II) and Ni(II) complexes and paramagnetic behaviour for Cu(II) complex. ESR spectral data shows the ionic link between metal and the Schiff base ligand. The metal complexes are found to be stabilized in the unusual oxidation states of the metal ion during electrolysis. Thermal analysis of the complex indicates that the decomposition takes place in three steps. IR and thermal studies indicate that the fourth position would be occupied by a water molecule in complexes. XRD shows that the complexes have the crystallite size of 31, 40 and 67 nm, respectively. The surface morphology of the complexes was studied by SEM. The antimicrobial activity of the ligand and its complexes were screened by Kirby Bayer Disc Diffusion method. DNA cleavage studies were performed for metal–Schiff base complexes in presence of hydrogen peroxide as oxidant.  相似文献   

11.
A new series of transition metal complexes of Cu(II), Ni(II), Co(II), Mn(II), Zn(II), VO(IV), Hg(II) and Cd(II) have been synthesized from the Schiff base (L) derived from 4-aminoantipyrine, 3-hydroxy-4-nitrobenzaldehyde and o-phenylenediamine. Structural features were obtained from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV-Vis, 1H NMR and ESR spectral studies. The data show that these complexes have composition of ML type. The UV-Vis, magnetic susceptibility and ESR spectral data of the complexes suggest a square-planar geometry around the central metal ion except VO(IV) complex which has square-pyramidal geometry. The redox behaviour of copper and vanadyl complexes was studied by cyclic voltammetry. Antimicrobial screening tests gave good results in the presence of metal ion in the ligand system. The nuclease activity of the above metal complexes shows that Cu, Ni and Co complexes cleave DNA through redox chemistry whereas other complexes are not effective.  相似文献   

12.
Tridentate chelate complexes M[LX?·?2H2O], where M?=?Co(II), Ni(II), Cu(II), Zn(II), and Cd(II) have been synthesized from the Schiff base L?=?N-[1-(3-aminopropyl)imidazole]salicylaldimine and X?=?Cl. Microanalytical data, UV-Vis, magnetic susceptibility, IR, 1H-NMR, mass, and EPR techniques were used to confirm the structures. Electronic absorption spectra and magnetic susceptibility measurements suggest square-planar geometry for copper complex and octahedral for other metal complexes. EPR spectra of copper(II) complex recorded at 300?K confirm the distorted square-planar geometry of the copper(II) complex. Biological activities of the ligand and metal complexes have been studied on Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa, and Candida albicans by the well diffusion method. The activity data show the metal complexes to be more potent than the parent ligand against two bacterial species and one fungus. The electrochemical behavior of the copper complex was studied by cyclic voltammetry.  相似文献   

13.
The complexes of Co(II), Ni(II), Cu(II), Zn(II), Cd(II), Hg(II), dioxouranium(VI), and Th (IV) with a new Schiff base, 3-[(Z)-5-amino-1,3,3-trimethyl cyclohexylmethylimino]-1,3-dihydroindol-2-one formed by the condensation of isatin (Indole-2.3-dione) with isophoronediamine(5-amino-1,3,3-trimethyl-cyclohexane methylamine) (IPDA) was synthesized and characterized by microanalysis, conductivity, UV-visi-ble, FT-IR, 1 H NMR,TGA, and magnetic susceptibility measurements. All the complexes exhibit 1: 1 metal to ligand ratio except for the dioxouranium(VI) and thorium(IV) complexes, where the metal: ligand stoichiometry is 1: 2. The spectral data revealed that the ligand acts as monobasic bidentate, coordinating to the metal ion through the azomethine nitrogen and carbonyl oxygen of the isatin moiety. Tetrahedral geometry for Co(II), Ni(II), Zn(II), Cd(II), and Hg(II) complexes, square planar geometry for Cu(II) complexes, and the coordination numbers 6 and 8 for UO2(VI) and Th(IV) complexes, respectively, are proposed. Both the ligand and the metal complexes were screened for their antibacterial activity against Bacillus subtilis, Staphylococcus aureus (S. aureus), Escherichia coli (E. coli), and Pseudomonas aeruginosa, and the complexes are more potent bactericides than the ligand. The anthelmentic activity of the ligand and its complexes against earthworms was also investigated. This article was submitted by the authors in English.  相似文献   

14.
Neutral chelates of 3,4-diphenyl-5-mercapto-l,2,4-triazole (DPMTH) with Fe(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) have been prepared and characterized by analytical and physicochemical techniques such as magnetic susceptibility measurements, TGA, electronic ESR and IR spectral studies. The IR data suggest that DPMTH behaves as a uninegative bidentate ligand in all the complexes except Fe(II) and Ni(II) where it is tridentate. The complexes have been found to display significant antifugal activity againstA. ahernata andA. flavus.  相似文献   

15.
A new series of transition metal complexes of Schiff base isonicotinic acid (2-hydroxybenzylidene)hydrazide, HL, have been synthesized. The Schiff base reacted with Cu(II), Ni(II), Co(II), Mn(II), Fe(III) and UO2(II) ions as monobasic tridentate ligand to yield mononuclear complexes of 1:2 (metal:ligand) except that of Cu(II) which form complex of 1:1 (metal:ligand). The ligand and its metal complexes were characterized by elemental analyses, IR, UV-vis, mass and 1H NMR spectra, as well as magnetic moment, conductance measurements, and thermal analyses. All complexes have octahedral configurations except Cu(II) complex which has an extra square planar geometry distorted towards tetrahedral. While, the UO2(II) complex has its favour hepta-coordination. The ligand and its metal complexes were tested against one strain Gram +ve bacteria (Staphylococcus aureus), Gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The tested compounds exhibited higher antibacterial activities.  相似文献   

16.
Abstract

Monobasic tridentate Schiff base ligand having ONS donor sequence was prepared by condensing N-aminopyrimidine-2-thione with o-vanillin. The complexes were formed by reacting ligand and the metal acetates of Cu(II), Ni(II), Co(II), Mn(II), and Cd(II) in methanol to get a series of mononuclear and dinuclear complexes. The characterization of ligand and metal complexes were carried out by elemental analyses, conductivity measurements, magnetic susceptibility data, FTIR, UV-vis, NMR, and API-ES mass spectral data. The structure of the complexes was confirmed on the basis of elemental analyses, magnetic susceptibility, API-ES mass spectral data and thermal gravitational analysis (TGA).

GRAPHICAL ABSTRACT   相似文献   

17.
A novel Schiff base has been designed and synthesized using the bioactive ligand obtained from 4-aminoantipyrine, 3,4-dimethoxybenzaldehyde and 2-aminobenzoic acid. Its Cu(II), Co(II), Ni(II), Zn(II) complexes have also been synthesized in ethanol medium. The structural features have arrived from their elemental analyses, magnetic susceptibility, molar conductance, mass, IR, UV–Vis, 1H NMR and ESR spectral studies. The data show that the complexes have composition of ML2 type. The electronic absorption spectral data of the complexes suggest an octahedral geometry around the central metal ion. The interaction of the complexes with calf thymus (CT) DNA has been studied using absorption spectra, cyclic voltammetric, and viscosity measurement. The metal complexes have been found to promote cleavage of pUC19 DNA from the super coiled form I to the open circular form II. The complexes show enhanced antifungal and antibacterial activities compared with the free ligand.  相似文献   

18.
《Polyhedron》1986,5(10):1635-1638
The synthesis and characterization of Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and UO2+2 complexes of biacetylmonoxime isonicotinoylhydrazone (BMINH) are reported. Elemental-analysis, magnetic, thermal and spectral (IR, visible and NMR) measurements have been used to characterize the complexes. IR spectral data show that the ligand behaves in a bidentate and/or tridentate manner. An octahedral structure is proposed for the Ni(II) complexes, while a square-planar structure is proposed for both Co(II) and Cu(II) complexes, on the basis of magnetic and spectral measurements.  相似文献   

19.
A series of metal complexes was synthesized using a simple thiourea derivative. The prepared complexes were characterized using different techniques (FTIR, ESR, X-ray diffraction [XRD], TG/DTA, and TEM). The FTIR spectrum of the ligand shows the presence of its tautomer forms (keto–enol). The ligand coordinates as a neutral bidentate in the Pt(IV), Pd(II), and Pt(II) complexes. In the case of Co(II) and Ni(II) complexes, the ligand is mono-negative bidentate. The proposed complexes are four to six coordinate. The geometries are proposed based on electronic spectral data and magnetic measurements and were verified using other tools. The XRD patterns reflect the nanocrystalline structures except for the Cu(II) complex, which is amorphous. The TEM images for platinum complexes show nanosize particles and homogeneous metal ion distribution on the complex surface. The EPR spectrum of Cu(II) complex verified the octahedral geometry of the complex. Molecular modeling was performed to assign the structural formula proposed for the ligand based on the characterization results.  相似文献   

20.
The Schiff base ligand, N,N'-bis-(2-furancarboxaldimine)-3,3'-diaminobenzidene (L) obtained by condensation of 2-furaldehyde and 3,3'-diaminobenzidene, was used to synthesize the mononuclear complexes of the type, [M(L)](NO3)2 [M=Co(II), Ni(II), Cu(II) and Zn(II)]. The newly synthesized ligand, (L) and its complexes have been characterized on the basis of the results of the elemental analysis, molar conductance, magnetic susceptibility measurements and spectroscopic studies viz, FT-IR, 1H and 13C NMR, mass, UV-vis and EPR. EPR, UV-vis and magnetic moment data revealed a square planar geometry for the complexes with distortion in Cu(II) complex and conductivity data show a 1:2 electrolytic nature of the complexes. Absorption and fluorescence spectroscopic studies support that Schiff base ligand, L and its Cu(II) and Zn(II) complex exhibit significant binding to calf thymus DNA. The highest binding affinity in case of L may be due to the more open structure as compared to the metal coordinated complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号