首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
meso-2,3-Dimercaptosuccinic acid (meso-DMSA) is an effective chelating agent for the treatment of lead poisoning. We have developed a capillary electrophoresis (CE) method to monitor the urinary excretion of meso-DMSA in human beings. The urine sample was directly injected for analysis in CE without the requirement of solid-phase extraction (SPE). The meso-DMSA was detected in 20 mM borate buffer (pH 8.3) using a 60-cm length bare fused-silica capillary (75-m ID, 52.5-cm effective length). The meso-DMSA can be extensively biotransformed during metabolism, and no meso-DMSA in urine samples was found in our studies. Any metabolized meso-DMSA can be successfully converted to free meso-DMSA by chemical reduction with dithiothreitol (DTT). In addition, samples were also treated with ethylenediaminetetraacetic acid (EDTA) to transchelate any meso-DMSA that is coordinated with metal ions present in the urine samples. The total amount of meso-DMSA present as these chemical forms was quantified after chemical reduction and addition of EDTA. The detection limit of meso-DMSA was about 50 M, the RSD of peak area and migration time of meso-DMSA were 4–8% and less than 1%, respectively.  相似文献   

2.
meso‐Nitrosubporphyrinatoboron(III) was synthesized by nitration of meso‐free subporphyrin with AgNO2/I2. The subsequent reduction with a combination of NaBH4 and Pd/C gave meso‐aminosubporphyrinatoboron(III). meso‐Nitro‐ and meso‐amino‐groups significantly influenced the electronic properties of subporphyrin, which has been confirmed by NMR and UV/Vis spectra, electrochemical analysis, and DFT calculations. Oxidation of meso‐aminosubporphyrinatoboron(III)s with PbO2 cleanly gave meso‐to‐meso azosubporphyrinatoboron(III)s that exhibited almost coplanar conformations and large electronic interaction through the azo‐bridge.  相似文献   

3.
A series of meso‐ester‐substituted BODIPY derivatives 1–6 are synthesized and characterized. In particular, dyes functionalized with oligo(ethylene glycol) ether styryl or naphthalene vinylene groups at the α positions of the BODIPY core ( 3 – 6 ) become partially soluble in water, and their absorptions and emissions are located in the far‐red or near‐infrared region. Three synthetic approaches are attempted to access the meso‐carboxylic acid (COOH)‐substituted BODIPYs 7 and 8 from the meso‐ester‐substituted BODIPYs. Two feasible synthetic routes are developed successfully, including one short route with only three steps. The meso‐COOH‐substituted BODIPY 7 is completely soluble in pure water, and its fluorescence maximum reaches around 650 nm with a fluorescence quantum yield of up to 15 %. Time‐dependent density functional theory calculations are conducted to understand the structure–optical properties relationship, and it is revealed that the Stokes shift is dependent mainly on the geometric change from the ground state to the first excited singlet state. Furthermore, cell staining tests demonstrate that the meso‐ester‐substituted BODIPYs ( 1 and 3 – 6 ) and one of the meso‐COOH‐substituted BODIPYs ( 8 ) are very membrane‐permeable. These features make these meso‐ester‐ and meso‐COOH‐substituted BODIPY dyes attractive for bioimaging and biolabeling applications in living cells.  相似文献   

4.
Novel boron‐dipyrromethene (BODIPY)‐bridged 22‐oxacorrole dyads, using meso‐pyrrolyl 22‐oxacorrole as a key synthon, have been synthesized. The reactivity of the meso‐pyrrolyl group of 22‐oxacorrole was exploited to synthesize the first examples of BODIPY‐bridged 22‐oxacorrole dyads in ≈40 % yield. The dyads are stable and exhibited interesting spectral and electrochemical properties.  相似文献   

5.
Unsymmetrical 22‐oxacorrole containing two aryl groups and one pyrrole group at the meso position was synthesized by condensing one equivalent of 16‐oxatripyrrane with one equivalent of meso aryl dipyromethane under mild acid‐catalyzed conditions followed by oxidation with 2,3‐dichloro‐5,6‐dicyano‐1,4‐benzoquinone (DDQ). This [3+2] condensation approach was expected to yield meso‐free 25‐oxasmaragdyrin but unexpectedly afforded unsymmetrical meso‐pyrrole‐substituted 22‐oxacorrole. We demonstrated the versatility of the reaction by synthesizing four new meso‐pyrrole‐substituted 22‐oxacorroles. The reactivity of α‐position of meso‐pyrrole was tested by carrying out various functionalization reactions such as bromination, formylation, and nitration and obtained the functionalized meso‐pyrrole‐substituted 22‐oxacorroles in decent yields. The X‐ray structure obtained for one of the functionalized meso‐pyrrole substituted 22‐oxacorrole revealed that the macrocycle was nearly planar and the meso‐pyrrole was in the perpendicular orientation with respect to the macrocyclic plane. The meso‐pyrrole‐substituted 22‐oxacorroles absorb strongly in 400–700 nm region with one strong Soret band and four weak Q bands. The 22‐oxacorroles are strongly fluorescent and showed emission maxima at ≈650 nm with decent quantum yields and singlet‐state lifetimes. The 22‐oxacorroles are redox‐active and exhibited three irreversible oxidations and one or two reversible reduction(s). A preliminary biological study indicated that meso‐pyrrole corroles are biocompatible.  相似文献   

6.
The synthesis and aggregation behavior of meso‐sulfinylporphyrins are described. The copper‐catalyzed C–S cross‐coupling reaction of a meso‐iodoporphyrin with benzenethiol and n‐octanethiol has proved to be an efficient method for the synthesis of meso‐sulfanylporphyrins, which are oxygenated by m‐chloroperbenzoic acid to produce the corresponding meso‐sulfinylporphyrins. Optically active zinc meso‐sulfinylporphyrins were successfully isolated by means of optical resolution of the racemates on a chiral HPLC column. Zinc sulfinylporphyrins readily undergo self‐organization through S–oxo–zinc coordination to form cofacial porphyrin dimers in solution, in which the hetero‐ and homodimers are present as a diastereomeric mixture. The aggregation modes of the S–oxo‐tethered porphyrin dimers were fully characterized by 1H NMR, IR, and UV/Vis spectroscopy as well as DFT calculations on their model compounds, thus revealing that the self‐aggregation behavior depends on the combination of S chirality. The absolute configurations at the sulfur center can be determined by the exciton‐coupled CD method. The observed self‐association constant for the S–oxo‐tethered dimerization of (S)‐phenylsulfinylporphyrin in toluene is larger than that in dichloromethane, which reflects the difference in dipole moments between the homodimer and the monomer. In cyclic and differential pulse voltammetry, the first oxidation process of the cofacial dimers is split into two reversible steps, which indicates that the initially produced π radical cations are delocalized efficiently between the two porphyrin rings. The present findings demonstrate the potential utility of meso‐sulfinyl groups as promising ligands for investigating the effects of peripheral chirality on the structures and optical and electrochemical properties of metal‐assisted porphyrin self‐assemblies.  相似文献   

7.
In contrast to the extensive development of the meso-functionalization of porphyrins, that of corroles had rarely been explored until the development of practical synthetic methods for meso-free corroles in 2015. The ready availability of meso-free corroles opened up meso-functionalization chemistry of corroles, giving rise to successful synthesis of various meso-substituted corroles such as meso-halogen, meso-nitro, meso-amino, meso-oxo, and meso-iminocorroles as well as meso–meso-linked corrole dimers and corrole tapes. In some cases, 2NH corroles exist as stable or transient radical species. The impact of meso-functionalization on the structures, electronic properties, optical characteristics, and aromaticity of corroles are highlighted in this Minireview.  相似文献   

8.
The unique optical properties of free‐base meso‐tris(5‐methylthien‐2‐yl)corrole were compared to those of the widely investigated meso‐triphenyl‐substituted analogue. A combination of spectroscopic and computational experiments was undertaken to elucidate the relationship between structural features of the neutral, mono‐anionic and mono‐cationic forms of the corroles and their corresponding optical properties. A general bathochromic shift was measured for the thienyl‐substituted corrole. The experimental spectra are supported by excited state calculations. A systematic series of ground state minimizations were performed to determine energy minima for the flexible and solvent‐sensitive molecules. Trithienylcorrole was found to have a more nonplanar macrocycle in conjunction with a high degree of π‐overlap with the meso‐substituents. Both structural features contribute to their bathochromically shifted optical spectra. The configurational character of the thienyl‐substituted corrole is shown to have a larger degree of molecular orbital mixing and doubly excited character, which suggest a more complex electronic structure that does not fully adhere to the Gouterman four‐orbital model. The reactivity of the thienyl groups, particularly with respect to their ability to be (electro)‐polymerized, combined with the tight coupling of the meso‐thienyl groups with the corrole chromophore elucidated in this work, recommends the meso‐thienylcorroles as building blocks in, for instance, organic semiconductor devices.  相似文献   

9.
The thermochemistry of solution and solvation of meso-substituted porphyrin ligands in three solvents differing in the donor-acceptor properties (benzene, chloroform, dimethylformamide) was studied. The results are correlated with the steric structure of the macrorings. Regular trends in variation of the electronic absorption spectra of the free porphyrins (H2P) and their dications (H4P2+) upon meso substitution were revealed.__________Translated from Zhurnal Obshchei Khimii, Vol. 75, No. 5, 2005, pp. 854–858.Original Russian Text Copyright © 2005 by Berezin.  相似文献   

10.
Supramolecular complexes of [60]- and [70]fullerenes with various meso-tetraphenylporphyrins in toluene solutions have been studied by electronic absorption spectroscopy. Charge transfer (CT) absorption bands are observed in the visible region. Vertical ionization potentials (I D V) of the meso-tetraphenylporphyrins are reported from a study of EDA interaction of these porphyrins with a number of electron acceptors like o-chloranil, p-chloranil, 2,3-dichloro-5,6-dicyanobenzoquinone (DDQ) and vitamin K. The dependence of the CT transition energy on the donor ionization potential has been utilized to estimate the vertical electron affinities (E A V) of [60]- and [70]fullerenes in solution. The value of E A V for [60]fullerene is found to be 0.10 eV lower in magnitude than that of [70]fullerene. We have extracted degrees of CT, and oscillator and transition dipole strengths of the fullerenes/meso-tetraphenylporphyrins complexes. The experimental results show that the CT complexes studied here have a neutral character in their ground states. Electronic coupling elements have been determined for fullerene/meso-tetraphenylporphyrin complexes. Values of the solvent reorganization energy indicate that the electron transfer process takes place at a faster rate in the case of [70]fullerene/meso-tetraphenylporphyrin complexes.  相似文献   

11.
Covalently linked porphyrin oligomers are attractive because of their extended π-conjugated systems. Among various porphyrin oligomers, directly mesomeso linked porphyrin oligomers exhibit unique photophysical properties due to their strong exciton couplings derived from the alternative orthogonal geometry of the porphyrins. Although their structural and electronic properties can be greatly altered by substituents at meso positions, it is still difficult to introduce different substituents at the meso positions. Thus, it is a challenge to develop general synthetic methodologies for functional porphyrin dimers and oligomers with different substituents at the meso positions. Herein, a general synthetic strategy for ABC–ABC-type directly mesomeso linked porphyrin dimers by stepwise functionalization starting from 10,15,20-meso-free 5-substituted porphyrin as building block is established. A meso-ABC–ABC-type mesomeso-linked donor–π-acceptor-type porphyrin dimer was prepared and exhibited the highest power conversion efficiency (7.91 %) ever reported for dye-sensitized solar cells based on dimeric orthogonal donor–π-acceptor-type organic sensitizers. This synthetic strategy will provide useful guidance for the rational design of functional porphyrin dimers and oligomers for diverse applications.  相似文献   

12.
A mesomeso‐linked diphenylamine‐fused porphyrin dimer and its methoxy‐substituted analogue were synthesized from a mesomeso‐linked porphyrin dimer by a reaction sequence involving Ir‐catalyzed β‐selective borylation, iodination, meso‐chlorination, and SNAr reactions with diarylamines followed by electron‐transfer‐mediated intramolecular double C?H/C?I coupling. While these dimers commonly display characteristic split Soret bands and small oxidation potentials, they produced different products upon oxidation with tris(4‐bromophenyl)aminium hexachloroantimonate. Namely, the diphenylamine‐fused porphyrin dimer was converted into a dicationic closed‐shell quinonoidal dimer, while the methoxy‐substituted dimer gave a mesomeso, β‐β doubly linked porphyrin dimer.  相似文献   

13.
The synthesis, spectroscopic, and electrochemical properties of seven new PVmeso‐triarylcorroles ( 1 – 7 ) are reported. Compounds 1 – 7 were prepared by heating the corresponding free‐base corroles with POCl3 at reflux in pyridine. Hexacoordinate PV complexes of meso‐triarylcorroles were isolated that contained two axial hydroxy groups, unlike the PV complex of 8,12‐diethyl‐2,3,7,13,17,18‐hexamethylcorrole, which was pentacoordinate, or the PV complex of meso‐tetraphenylporphyrin, which was hexacoordinate with two axial chloro groups. 1H and 31P NMR spectroscopy in CDCl3 indicated that the hexacoordinated PVmeso‐triarylcorroles were prone to axial‐ligand dissociation to form pentacoordinated PVmeso‐triarylcorroles. However, in the presence of strongly coordinating solvents, such as CH3OH, THF, and DMSO, the PVmeso‐triarylcorroles preferred to exist in a hexacoordinated geometry in which the corresponding solvent molecules acted as axial ligands. X‐ray diffraction of two complexes confirmed the hexacoordination environment for PVmeso‐triarylcorroles. Their absorption spectra in two coordinating solvents revealed that PVmeso‐triarylcorroles showed a strong band at about 600 nm together with other bands, in contrast to PV–porphyrins, which showed weak bands in the visible region. These compounds were easier to oxidize and more difficult to reduce compared to PV–porphyrins. These compounds were brightly fluorescent, unlike the weakly fluorescent PV–porphyrins, and the quantum yields for selected PV–corroles were as high as AlIII and GaIII corroles, which are the best known fluorescent compounds among oligopyrrolic macrocycles.  相似文献   

14.
The intercalation of meso-tetrakis(4-pyridyl)porphyrin zinc, the cationic salts of meso-tetrakis(N-methylpyridinium-4-yl)porphyrin zinc, and zwitterionic meso-tetrakis-[N-(3-sulfonatopropyl)pyridinium-4-yl]porphyrin zinc from aqueous solutions as well as of meso-tetrakis(N-methylpyriclinium-4-yl)porphyrin zinc from pyridine solutions into V2O5 xerogel was studied. The intercalation complexes obtained were characterized by X-ray diffraction analysis, TG analysis, IR, and UV reflectance spectroscopy.  相似文献   

15.
meso‐Triazolyl‐appended ZnII–porphyrins were readily prepared by CuI‐catalyzed 1,3‐dipolar cycloaddition of benzyl azide to meso‐ethynylated ZnII–porphyrin (click chemistry). In noncoordinating CHCl3 solvent, spontaneous assembly occurred to form tetrameric array ( 3 )2 from mesomeso‐linked diporphyrins 3 , and dodecameric porphyrin squares ( 4 )4 and ( 5 )4 from the L ‐shaped mesomeso‐linked triporphyrins 4 and 5 . The structures of these assemblies were examined by 1H NMR spectra, absorption spectra, and their gel permeation chromatography (GPC) retention time. Furthermore, the structures of the dodecameric porphyrin squares ( 4 )4 and ( 5 )4 were probed by small‐ and wide‐angle X‐ray scattering (SAXS/WAXS) measurements in solution using a synchrotron source. Excitation‐energy migration processes in these assemblies were also investigated in detail by using both steady‐state and time‐resolved spectroscopic methods, which revealed efficient excited‐energy transfer (EET) between the mesomeso‐linked ZnII–porphyrin units that occurred with time constants of 1.5 ps?1 for ( 3 )2 and 8.8 ps?1 for ( 5 )4.  相似文献   

16.
Oligoureas (up to n=6) of meso cyclohexane‐1,2‐diamine were synthesized by chain extension with an enzymatically desymmetrized monomer 2 . Despite being achiral, the meso oligomers adopt chiral canonical 2.5‐helical conformations, the equally populated enantiomeric screw‐sense conformers of which are in slow exchange on the NMR timescale, with a barrier to screw‐sense inversion of about 70 kJ mol?1. Screw‐sense inversion in these helical foldamers is coupled with cyclohexane ring‐flipping, and results in a reversal of the directionality of the hydrogen bonding in the helix. The termini of the meso oligomers are enantiotopic, and desymmetrized analogues of the oligoureas with differentially and enantioselectively protected termini display moderate screw‐sense preferences. A screw‐sense preference may furthermore be induced in the achiral, meso oligoureas by formation of a 1:1 hydrogen‐bonded complex with the carboxylate anion of Boc‐d ‐proline. The meso oligoureas are the first examples of hydrogen‐bonded foldamers with reversible hydrogen‐bond directionality.  相似文献   

17.
A new family of conjugated meso‐tetraphenylporphyrin‐based dendrimers with four ( TPP1 , TPP2 ), eight ( TPP3 , TPP4 , TPP5 ) and up to sixteen ( TPP6 ) fluorenyl groups has been synthesized and fully characterized. These tetraphenylporphyrin‐cored dendrimers present peripheral alkynyl π‐conjugated dendrons with fluorenyl termini. The meso‐aryl rings of these porphyrins are functionalized either in para‐ ( TPP1 , TPP2 , and TPP3 ) or meta‐positions ( TPP4 , TPP5 , and TPP6 ). Their detailed luminescence properties are discussed in reference to two porphyrins lacking fluorenyl dendrons ( TPP ‐ H1,2,3 and TPP ‐ H4,5,6 ). A strong dependence of their luminescence quantum yield and lifetime on their structures is stated, their nonlinear optical properties were also discussed.  相似文献   

18.
meso-2,3-Butanediol (meso-2,3-BDO) is essential for the synthesis of various economically valuable biosynthetic products; however, the production of meso-2,3-BDO from expensive carbon sources is an obstacle for industrial applications. In this study, genes involved in the synthesis of 2,3-BDO in Klebsiella pneumoniae were identified and used to genetically modify Escherichia coli for meso-2,3-BDO production. Two 2,3-BDO biosynthesis genes—budA, encoding acetolactate, and meso-budC, encoding meso-SADH—from K. pneumoniae were cloned into the pUC18 plasmid and introduced into E. coli. In 2 l batch culture, the SGSB03 E. coli strain yielded meso-2,3-BDO at 0.31 g/gglucose (with a maximum of 15.7 g/lculture after 48 h) and 0.21 g/gcrude glycerol (with a maximum of 6.9 g/lculture after 48 h). Batch cultures were grown under optimized conditions (aerobic, 6% carbon source, 37 °C, and initial pH 7). To find the optimal culture conditions for meso-2,3-BDO production, we evaluated the enzyme activity of meso-SADH and the whole cell conversion yield (meso-2,3-BDO/acetoin) of the E. coli SGSB02, which contains pSB02. meso-SADH showed high enzyme activity at 30–37 °C and pH 7 (30.5–41.5 U/mg of protein), and the conversion yield of SGSB02 E. coli was highest at 37–42 °C and a pH of 7 (0.25–0.28 g meso-2,3-BDO/gacetoin).  相似文献   

19.
Oxidative Aryl-Aryl-Coupling of 6,6′,7,7′-Tetramethoxy-1,1′,2,2′,3,3′,4,4′-octahydro-1,1′-biisoquinoline Derivatives We describe the synthesis of 2 by intramolecular oxidative coupling of 1, 1′-biisoquinoline derivatives 1 (Scheme 1). This heterocyclic system can be considered as a union of two apomorphine molecules and may thus exhibit dopaminergic activity. - The readily available tetrahydrobiisoquinoline 6 was methylated to 11 (Scheme 4) and reduced (with NaBH3CN) to rac- 7 and (catalytically) to meso- 7 (Scheme 3). Reduction of 11 with NaBH4 and of the biurethane rac- 9 with LiAlH4/AlCl3 afforded meso- and rac- 10 , respectively (Scheme 4). Demethylation of 6 , meso- 10 , meso- and rac- 7 led to 12 , meso- 14 , meso- and rac- 13 , respectively (Scheme 5). The latter two phenols were converted with chloroformic ester to the hexaethoxycarbonyl derivatives meso- and rac- 15 and subsequently saponified to the biurethanes meso- and rac- 16 , respectively (Scheme 5). - In order to assure proximity of the two aromatic rings, the ethano-bridged derivatives meso- and rac- 18 were prepared by condensing meso- and rac- 7 with oxalic ester and reducing the oxalyl derivatives meso- and rac- 17 with LiAlH4/AlCl3, respectively (Scheme 6). The 1H-NMR, spectra at different temperatures showed that rac- 18 populated two conformers but rac- 17 only one, all with C2-symmetry, and that meso- 17 as well as meso- 18 populated two enantiomeric conformers with C1-symmetry. Whereas both oxalyl derivatives 17 were fairly rigid due to the two amide groupings, the ethano derivatives 18 exhibited coalescence temperatures of -20 and 30°. - The intramolecular coupling of the two aromatic rings was successful under ‘non-phenolic oxidative’ conditions with the tetramethoxy derivatives 7, 10 and 18 , the rac-isomers leading to the desired dibenzophenanthrolines, the meso-isomers, however, mostly to dienones (Scheme 9): With VOF3 and FSO3H in CF3COOH/CH2Cl2 rac- 7 was converted to rac- 19 , rac- 18 to rac- 21 and rac- 10 to a mixture of rac- 20 and the dienone 23b of the morphinane type. Under the same conditions meso- 10 was transformed to the dienone 23a of the morphinane type, whereas meso- 18 yielded the dienone 24 of the neospirine type, both in lower yields. The analysis of the spectral data of the six coupling products offers evidence for their structures. With the demethylation of rac- 20 and rac- 21 to rac- 25 and rac- 26 , respectively, the synthetic goal of the work was reached, but only in the rac-series (Scheme 10). - In the course of this work two cleavages of octahydro-1,1′-biisoquinolines at the C(1), C(1′)-bond were observed: (1) The biurethanes 9 and 16 in both the meso- and rac-series reacted with oxygen in CF3COOH solution to give the 3,4-dihydroisoquinolinium salts 27 and 28 ; the latter was deprotonated to the quinomethide 30 (Scheme 11). (2) Under the Clarke-Eschweiler reductive-methylation conditions meso- and rac- 7 were cleaved to the tetrahydroisoquinoline derivative 32 .  相似文献   

20.
A new series of boron–dipyrromethene (BDP, BODIPY) dyes with dihydronaphthalene units fused to the β‐pyrrole positions ( 1 a – d , 2 ) has been synthesised and spectroscopically investigated. All the dyes, except pH‐responsive 1 d in polar solvents, display intense emission between 550–700 nm. Compounds 1 a and 1 b with a hydrogen atom and a methyl group in the meso position of the BODIPY core show spectroscopic properties that are similar to those of rhodamine 101, thus rendering them potent alternatives to the positively charged rhodamine dyes as stains and labels for less polar environments or for the dyeing of latex beads. Compound 1 d , which carries an electron‐donating 4‐(dimethylamino)phenyl group in the meso position, shows dual fluorescence in solvents more polar than dibutyl ether and can act as a pH‐responsive “light‐up” probe for acidic pH. Correlation of the pKa data of 1 d and several other meso‐(4‐dimethylanilino)‐substituted BODIPY derivatives allowed us to draw conclusions on the influence of steric crowding at the meso position on the acidity of the aniline nitrogen atom. Preparation and investigation of 2 , which carries a nitrogen instead of a carbon as the meso‐bridgehead atom, suggests that the rules of colour tuning of BODIPYs as established so far have to be reassessed; for all the reported couples of meso‐C‐ and meso‐N‐substituted BODIPYs, the exchange leads to pronounced redshifts of the spectra and reduced fluorescence quantum yields. For 2 , when compared with 1 a , the opposite is found: negligible spectral shifts and enhanced fluorescence. Additional X‐ray crystallographic analysis of 1 a and quantum chemical modelling of the title and related compounds employing density functional theory granted further insight into the features of such sterically crowded chromophores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号