首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Photochromic 1,2‐dithienylethene (DTE) derivatives with a high thermal stability and fatigue resistance are appealing for optical switching of fluorescence. Here, we introduce a donor–photochromic bridge–acceptor tetraphenylethene‐dithienylethene‐perylenemonoimide (TPE‐DTE‐PMI) triad, in which TPE acts as the electron donor, PMI as the electron acceptor, and DTE as the photochromic bridge. In this system, the localized and intramolecular charge transfer emission of TPE‐DTE‐PMI with various Stokes shifts have been observed due to the photoinduced intramolecular charge transfer in different solvents. Upon UV irradiation, the fluorescence quenching resulting from photochromic fluorescence resonance energy transfer in TPE‐DTE‐PMI has been demonstrated in solution and in solid films. The fluorescence on/off switching ratio in polymethylacrylate film exceeds 100, a value much higher than in polymethylmethacrylate film, thus indicating that the fluorescence switching is dependent on matrices.  相似文献   

2.
9‐Fluorenylidenemalononitrile (FDCN) or 1, 1‐diphenyl‐2,2‐dicyanoethylene (DPCN) reacted with 10‐methyl‐9,10‐dihydroacridine (AcrH2) under irradiation (λ 320 nm) to give couping products. In order to gain further insight into the mechanism of the photo‐induced reaction, the photophysics of the reactions of FDCN or DPCN with AcrH2 have been investigated by using UV‐vis spectroscopy, fluorescence spectroscopy, excitation spectroscopy and time‐resolved fluorescence spectroscopy, respectively. The results show that FDCN or DPCN interacts with AcrH2 in the ground states to form a charge transfer complex, which further reacts to give the coupling product upon. irradiation.  相似文献   

3.
A series of styrene‐substituted 1,3,4‐oxadiazoles has been designed and investigated as new low‐molecular‐weight organogelators. The photophysical properties of the resulting thermoreversible organogels have been characterized by UV/Vis absorption and luminescence spectroscopies. Surprisingly, the gelation ability of the oxadiazoles depended on the presence of the styrene moiety as gelation of the investigated oxadiazoles did not take place in its absence. Gel formation was accompanied by a modification of the fluorescence of the organogelators in the supramolecular state. UV irradiation of the gels caused a rearrangement of the immobilized 1,3,4‐oxadiazoles bearing a styrene moiety by a tandem [4+2] and [3+2] cascade reaction. Structure modification and color change of the gels were also evident upon irradiation.  相似文献   

4.
Photoactivation in CdSe/ZnS quantum dots (QDs) on UV/Vis light exposure improves photoluminescence (PL) and photostability. However, it was not observed in fluorescent carbon quantum dots (CDs). Now, photoactivated fluorescence enhancement in fluorine and nitrogen co‐doped carbon dots (F,N‐doped CDs) is presented. At 1.0 atm, the fluorescence intensity of F,N‐doped CDs increases with UV light irradiation (5 s–30 min), accompanied with a blue‐shift of the fluorescence emission from 586 nm to 550 nm. F,N‐doped CDs exhibit photoactivated fluorescence enhancement when exposed to UV under high pressure (0.1 GPa). F,N‐doped CDs show reversible piezochromic behavior while applying increasing pressure (1.0 atm to 9.98 GPa), showing a pressure‐triggered aggregation‐induced emission in the range 1.0 atm–0.65 GPa. The photoactivated CDs with piezochromic fluorescence enhancement broadens the versatility of CDs from ambient to high‐pressure conditions and enhances their anti‐photobleaching.  相似文献   

5.
Supramolecular polymers based on ureido‐pyrimidinone (UPy) represent a promising class of biocompatible materials for medical applications. Here, the chemical modification effect of UV irradiation, used to sterilize these materials, is studied. Besides anticipated crosslinking effects, UV irradiation causes telechelic UPy‐polymers to become fluorescent. UPy‐model compounds confirm a relation between UV‐induced changes and the UPy‐moiety. UV‐induced fluorescence and IR‐spectral changes are (partially) reversible by heat and/or solvent treatment. The results indicate the presence of at least two distinct UV‐induced molecular species. UPy‐model compounds with specific tautomeric forms directly relate fluorescence to UPy‐enol tautomers. Photo‐enolization is hypothesized to occur via an excited‐state intermolecular double proton transfer. Changes in UPy‐tautomeric equilibrium and crosslinking are factors that influence the dynamics of UPy‐based materials. Identification and understanding of such factors will aid in the successful application of these materials, for example as biomaterial in tissue engineering applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 81–90  相似文献   

6.
Protoporphyrin IX‐zinc oxide (PP‐ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), and steady‐state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time‐resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible‐light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground‐state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond‐ to picosecond‐resolved studies.  相似文献   

7.
Aggregation‐induced emission combined with aggregation‐promoted photo‐oxidation has been reported only in two works quite recently. In fact, this phenomenon is not commonly observed for AIE‐active molecules. In this work, a new tetraphenylethylene derivative (TPE‐4T) with aggregation‐induced emission (AIE) and aggregation‐promoted photo‐oxidation was synthesized and investigated. The pristine TPE‐4T film exhibits strong bluish‐green emission, which turns to quite weak yellow emission after UV irradiation. Interestingly, after solvent treatment, the weakly fluorescent intermediate will become bright‐yellow emitting. Moreover, the morphology of the TPE‐4T film could be regulated by UV irradiation. The wettability of the TPE‐4T microcrystalline surface is drastically changed from hydrophobic to hydrophilic. This work contributes a new member to the aggregation induced photo‐oxidation family and enriches the photo‐oxidation study of tetraphenylethylene derivatives.  相似文献   

8.
The well‐defined azoindazole‐containing homopolymer, poly(6‐{6‐[(4‐dimethylamino) phenylazo]‐indazole}‐hexyl methacrylate) (PDHMA), and amphiphilic diblock copolymer, poly({6‐[6‐(4‐dimethylamino)phenylazo]‐indazole}‐hexyl methacrylate)‐b‐poly(2‐(dimethylamino)ethylmethacrylate) (PDHMAmb‐PDMAEMAn), were successfully prepared via reversible addition‐fragmentation chain transfer polymerization technique. The homopolymer and amphiphilic diblock copolymer in CH2Cl2 exhibited intense fluorescence emission accompanied by trans–cis photoisomerization of azoindazole group under UV irradiation. The experiment results indicated that the intense fluorescence emission may be attributed to an inhibition of photoinduced electron transfer of the cis form of azoindazole. On the other hand, the intense fluorescence emission of amphiphilic diblock copolymers in water‐tetrahydrofuran mixture was observed, which increased with the volume ratio of water in the mixed solvent. The self‐aggregation behaviors of three amphiphilic diblock copolymers were examined by transmission electron microscopy, laser light scattering, and UV–vis spectra. The restriction of intramolecular rotation of the azoindazole groups in aggregates was considered as the main cause of aggregation‐induced fluorescence emission. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

9.
Poly(amidoamine)(PAMAM) dendrimers with a cinnamoyl shell were prepared by reacting full generation PAMAM dendrimers (G=3.0) with 2‐chloroethanol and cinnamoyl chloride, which resulted in densely packed polymerizable unsaturated groups on the periphery. The cinnamoyl shell of the dendrimers dimerized when irradiated under a UV light by using 5‐nitroacenaphthylene as an initiator in dilute dimethylformamide (DMF). FTIR, 1H NMR, UV‐Vis, SEC, and a viscosity test certified that the photocycloaddition of the cinnamoyl shell of the dendrimers took place within the molecules with the disappearance of double bond signals in the FTIR. 1H NMR spectra as well as the intrinsic viscosity and polydispersity value of the products both before and after irradiation showed no difference. It was further found that the cinnamoyl shell‐modified dendrimers possessed fluorescence property, and the fluorescence intensity became stronger when the shell was photocyclized under UV‐ irradiation. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4147–4153, 2000  相似文献   

10.
A new methodology for creating patterned fluorescence images was developed based on acrylate polymers that have pendant triphenylmethane derivatives as precursor fluorophores. Photoinduced oxidation of the substituted nonfluorescent triphenylmethane substituents on the polymers results in the generation of fluorescent cationic species. Patterned fluorescence images were obtained when the polymer film was subjected to photomasked UV‐irradiation. The rate of formation and quality of the patterned images were found to be dependent on the nature of substituents on the methane carbon of the triphenylmethane group. Inefficient image formation takes place with the polymer derived from the H‐substituted derivative owing to the inefficient oxidation of the triphenylmethane group. In contrast, photomasked UV‐irradiation of a thin polymer film derived from the CN‐substituted triphenylmethane derivative leads to fast (1 s irradiation, 12 mW · cm−2) and finely resolved patterned fluorescence images.

  相似文献   


11.
An ultraviolet (UV)‐cleavable bottlebrush polymer is synthesized using the “grafting‐onto” strategy by combining living radical polymerization and copper‐catalyzed azide‐alkyne cycloaddition (CuAAC). In this approach, reversible addition‐fragmentation chain transfer polymerization is used to prepare a poly(methylacrylate) backbone with azide side groups, while atom transfer radical polymerization is employed to prepare polystyrene (PS) side chains end‐functionalized with o‐nitrobenzyl (UV‐cleavable) propargyl groups. CuAAC is then used to graft PS side chains onto the polymer backbone, producing the corresponding bottlebrush polymers with UV‐cleavable PS side chains. The formation of the bottlebrush polymer is characterized by 1H nuclear magnetic resonance spectroscopy, gel permeation chromatography (GPC), and Fourier transform infrared spectroscopy. The cleavage behavior of the bottlebrush polymer is monitored in tetrahydrofuran solution under UV irradiation by GPC and viscosity measurements.

  相似文献   


12.
A new monomer, 2,3,6,7,10,11‐hexa(methacrylate) triphenylene (HMTP), and its crystals have been successfully synthesized, and the solid‐state polymerization under UV irradiation has been investigated. The photo polymerization of HMTP in solid was confirmed by the reduction of vinyl bonds in the FT‐IR and UV spectra of PHMTP in comparison with the corresponding spectra of its precursor. Thus, IR spectroscope was used to follow the polymerization of HMTP crystals under UV irradiation, and kinetic studies show a first‐order reaction with rate constant of 6.12 × 10?3 min?1. This value is slightly larger than that measured by the weight method. The polarizing optical microscope and X‐ray diffraction were used to study the crystal structure difference between the polymers and its monomer. The results show that the polymers' crystals obtained from photo polymerization kept the monomer crystal lattice. Because of strong overlap between the π‐electron of the triphenylene, the monomer and polymer crystals showed different fluorescence properties. All these results proved that the photo polymerization of HMTP crystals is governed by the packing structure of monomer molecules; in other words, this reaction is just lattice controlled polymerization. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 1526–1534, 2005  相似文献   

13.
Photo‐responsive block copolymer mPEG‐b‐poly(Tyr)‐g‐NB was prepared by introduction of o‐nitrobenzyl ester group into the side chain of amphiphilic poly(ethylene glycol)‐b‐poly(α‐hydroxy acids) (mPEG‐b‐poly(Tyr)) containing pendent alkynyl group via copper‐catalyzed azide‐alkyne cycloaddition reaction. The amphiphilic mPEG‐b‐poly(Tyr) was synthesized via the ring‐opening polymerization of O‐carboxyanhydrides, with monomethoxy poly(ethylene glycol) (mPEG) as macroinitiator. The molecular structure, self‐assembly, and photo‐controlled release of the obtained mPEG‐b‐poly(Tyr)‐g‐NB were thoroughly investigated. mPEG‐b‐poly(Tyr)‐g‐NB could self‐assemble into spherical micelles in water and showed disassembly under UV light irradiation, which was demonstrated by means of UV‐vis spectroscopy, scan electron microscopes, and dynamic light scattering measurement. Fluorescence emission measurements demonstrated that Nile red, encapsulated by micelles, can be released upon UV irradiation. This study provides a convenient way to construct smart poly(α‐hydroxy acids)‐based nanocarriers for controlled release of hydrophobic drugs. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

14.
The synthesis, full characterization, photoreduction properties, and catalytic activity for the copper(I)‐catalyzed alkyne‐azide cycloaddition (CuAAC) reaction of a copper(II)–DMEDA (N,N′‐dimethylethylendiamine) complex is reported. Spectroscopic studies (UV/Vis, EPR) demonstrated that under daylight illumination highly effective copper(II) to copper(I) reduction occurs in this complex. These findings are in agreement with a high photoreduction quantum yield value of 0.22 in MeOH, and a value approaching unity as determined in THF. The reduction process, which can also be conducted by irradiation at 365 nm by using a standard TLC (thin layer chromatography) lamp, is ascribed to a highly efficient photoinduced electron transfer (PET) process mediated by the benzophenone photosensitizer present in the carboxylate counterion. Having deaerated the reaction mixture, the photogenerated copper(I) species proved to be highly active for the CuAAC reaction, demonstrated by reactions conducted with low catalyst loading (0.5 mol %) on a range of clickable protected and non‐protected mono‐ and disaccharides. Once initiated, the reaction can be stopped at any time on introducing air into the reaction medium. Deoxygenation followed by irradiation restores the activity, making the copper(II)–DMEDA complex a switchable catalyst of practical value.  相似文献   

15.
A novel Cu–Zn β‐cyclodextrin (CuZn/β‐CD) model compound was synthesized under ultrasound irradiation to mimic the functionality of copper zinc superoxide dismutase (CuZnSOD). For comparison, Cu/β‐CD and Zn/β‐CD complexes were also synthesized via a sonochemical approach. The obtained complexes were characterized by FTIR, ICP‐OES, UV–vis and Scanning electron microscopy‐Energy dispersive X‐ray (SEM‐EDX) techniques. The SOD activity of the complexes was evaluated by a pyrogallol autoxidation method. These enzyme‐mimetic materials scavenge ambient free radicals, with the potential to provide significant antioxidant protection (scavenging ability > 70%).  相似文献   

16.
The extent of electronic coupling between a boron dipyrromethene (BODIPY) fluorophore and a diarylethene (DAE) photoswitch has been modulated in a covalently linked molecular dyad by irradiation with either UV or visible light. In the open isomer, both moieties can be regarded as individual chromophores, while in the closed form the lowest electronic (S0→S1) transition of the dyad is slightly shifted, enabling photomodulation of its fluorescence. Transient spectroscopy confirms that the dyad behaves dramatically different in the two switching states: while in the open isomer it resembles an undisturbed BODIPY fluorophore, in the closed isomer no fluorescence occurs and instead a red‐shifted DAE behavior prevails.  相似文献   

17.
Summary: Novel azobenzene‐functionalized hydroxypropyl methylcellulose (AZO‐HPMC) polymers and their α‐cyclodextrin (α‐CD) complexes have been prepared. These polymers show interesting sol‐gel transition behavior in aqueous solutions. In the absence of α‐CD, the gelation temperature increases after UV irradiation, while in the presence of α‐CD, the gelation temperature decreases after UV irradiation. The difference in the gelation temperatures between the trans and cis samples of AZO‐HPMC opens a wide operating window for reversible regulation of the sol‐gel transition behavior by photoirradiation.

The UV‐induced cis/trans isomerism of azobenzene‐functionalized hydroxypropyl methylcellulose and its α‐cyclodextrin complexes.  相似文献   


18.
Two series of new polyhedral oligomeric silsesquioxane (POSS)‐based fluorescent hybrid porous polymers, HPP‐1 and HPP‐2 , have been prepared by the Heck reaction of octavinylsilsesquioxane with 2,2′,7,7′‐tetrabromo‐9,9′‐spirobifluorene and 1,3,6,8‐tetrabromopyrene, respectively. Three sets of reaction conditions were employed to assess their effect on fluorescence. These materials exhibit tunable fluorescence from nearly no fluorescence to bright fluorescence both in the solid state and dispersed in ethanol under UV light irradiation by simply altering the reaction conditions. We speculated that the difference may be attributable to the fluorescence quenching induced by Et3N, P(o‐CH3Ph)3, and their hydrogen bromide salts employed in the reactions. This finding could give valuable suggestions for the construction of porous polymers with tunable/controllable fluorescence, especially those prepared by Heck and Sonogashira reactions in which these quenchers are used as organic bases or co‐catalysts. In addition, the porosities can also be tuned, but different trends in porosity have been found in these two series of polymers, which suggests that various factors should be carefully considered in the preparation of porous polymers with tunable/controllable porosity. Furthermore, HPP‐1 c showed moderate CO2 uptake and fluorescence that was efficiently quenched by nitroaromatic explosives, thereby indicating that these materials could be utilized as solid absorbents for the capture and storage of CO2 and as sensing agents for the detection of explosives.  相似文献   

19.
A new class of highly efficient and stable, blue‐phosphorescent PtII complexes based on a tetradentate chelating framework has been found to exhibit highly sensitive and reversible responses to multiple external stimuli including temperature, pressure, and UV irradiation with distinct phosphorescent color switching—from blue to red or white. Intermolecular excimer formation is the main origin of this intriguing multi‐response phenomenon. Highly efficient singlet‐oxygen sensitization by the PtII compounds yields UV‐light‐induced phosphorescence enhancement and color switching.  相似文献   

20.
Catechol and spiropyran functional groups were conjugated to a polymer backbone, allowing immobilization on polystyrene beads (PS beads). The final product was capable of stably reproducing the optical properties of spiropyran. Through the outstanding surface adhesion properties of the catechol functional group, spiropyran was immobilized on PS beads. Switchable photoluminescence in the spiropyran coated PS bead surfaces was observed depending on irradiation with either UV or visible light. The surfaces of the PS beads were morphologically examined by field emission scanning electron microscopy and X‐ray photoelectron spectroscopy was used for characterization of the constituent atoms. Furthermore, UV–Vis and fluorescence spectroscopy were used to confirm conversion between the spiropyran (SP) and merocyanine (MC) forms through UV or visible light irradiation on SP, while fluorescent images for both SP and MC were studied using confocal laser scanning microscopy. The confocal images of the SP‐PS beads system onto MDAMB‐231 cells under UV and visible light indicate the cellular uptake by emerging color within the cytoplasm. Advancing study, the remaining catechol groups can confers adhesive properties, given by contact angle data of various coated surfaces film. These stimuli‐responsive coatings are compatible as drawing switchable photochromic material on versatile substrate shown in confocal images of propylene film. Overall, this great water solubility and biocompatibility PS beads system also showed potential as cell bio‐imaging light stimuli responsive material, and the benefits of this system can also possibly address coat able advanced material for a wide range of surface light sensor applications. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号