首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
The original article to which this erratum refers was correctly published online on 1 December 2011. Due to an error at the publisher, it was then published in Journal of Combinatorial Designs 20: 124–141, 2012 without the required shading in several examples. To correct this, the article is here reprinted in full. The publisher regrets this error. We prove that for all odd there exists a latin square of order 3m that contains an latin subrectangle consisting of entries not in any transversal. We prove that for all even there exists a latin square of order n in which there is at least one transversal, but all transversals coincide on a single entry. A corollary is a new proof of the existence of a latin square without an orthogonal mate, for all odd orders . Finally, we report on an extensive computational study of transversal‐free entries and sets of disjoint transversals in the latin squares of order . In particular, we count the number of species of each order that possess an orthogonal mate. © 2012 Wiley Periodicals, Inc. J. Combin. Designs 20: 344–361, 2012  相似文献   

2.
A k‐plex in a Latin square of order n is a selection of kn entries in which each row, column, and symbol is represented precisely k times. A transversal of a Latin square corresponds to the case k = 1. We show that for all even n > 2 there exists a Latin square of order n which has no k‐plex for any odd but does have a k‐plex for every other . © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 477–492, 2008  相似文献   

3.
In a latin square of order n , a k ‐plex is a selection of kn entries in which each row, column, and symbol occurs k times. A 1 ‐plex is also called a transversal. A k ‐plex is indivisible if it contains no c ‐plex for 0 < c < k . We prove that, for all n ≥ 4 , there exists a latin square of order n that can be partitioned into an indivisible ? n / 2 ?‐plex and a disjoint indivisible ? n / 2 ?‐plex. For all n ≥ 3 , we prove that there exists a latin square of order n with two disjoint indivisible ? n / 2 ?‐plexes. We also give a short new proof that, for all odd n ≥ 5 , there exists a latin square of order n with at least one entry not in any transversal. Such latin squares have no orthogonal mate. Copyright © 2011 Wiley Periodicals, Inc. J Combin Designs 19:304‐312, 2011  相似文献   

4.
We introduce a linear method for constructing factor‐pair Latin squares of prime‐power order and we identify criteria for determining whether two factor‐pair Latin squares constructed using this linear method are orthogonal. Then we show that families of pairwise mutually orthogonal diagonal factor‐pair Latin squares exist in all prime‐power orders.  相似文献   

5.
《组合设计杂志》2018,26(2):84-96
An array is row‐Latin if no symbol is repeated within any row. An array is Latin if it and its transpose are both row‐Latin. A transversal in an array is a selection of n different symbols from different rows and different columns. We prove that every Latin array containing at least distinct symbols has a transversal. Also, every row‐Latin array containing at least distinct symbols has a transversal. Finally, we show by computation that every Latin array of order 7 has a transversal, and we describe all smaller Latin arrays that have no transversal.  相似文献   

6.
7.
8.
Denote by Fin(υ) the set of all integral pairs (t,s) for which there exist three Latin squares of order υ on the same set having fine structure (t,s). We determine the set Fin(υ) for any integer v ≥ 9. © 2005 Wiley Periodicals, Inc. J Combin Designs 14: 85–110, 2006  相似文献   

9.
A Latin square is pan‐Hamiltonian if the permutation which defines row i relative to row j consists of a single cycle for every ij. A Latin square is atomic if all of its conjugates are pan‐Hamiltonian. We give a complete enumeration of atomic squares for order 11, the smallest order for which there are examples distinct from the cyclic group. We find that there are seven main classes, including the three that were previously known. A perfect 1‐factorization of a graph is a decomposition of that graph into matchings such that the union of any two matchings is a Hamiltonian cycle. Each pan‐Hamiltonian Latin square of order n describes a perfect 1‐factorization of Kn,n, and vice versa. Perfect 1‐factorizations of Kn,n can be constructed from a perfect 1‐factorization of Kn+1. Six of the seven main classes of atomic squares of order 11 can be obtained in this way. For each atomic square of order 11, we find the largest set of Mutually Orthogonal Latin Squares (MOLS) involving that square. We discuss algorithms for counting orthogonal mates, and discover the number of orthogonal mates possessed by the cyclic squares of orders up to 11 and by Parker's famous turn‐square. We find that the number of atomic orthogonal mates possessed by a Latin square is not a main class invariant. We also define a new sort of Latin square, called a pairing square, which is mapped to its transpose by an involution acting on the symbols. We show that pairing squares are often orthogonal mates for symmetric Latin squares. Finally, we discover connections between our atomic squares and Franklin's diagonally cyclic self‐orthogonal squares, and we correct a theorem of Longyear which uses tactical representations to identify self‐orthogonal Latin squares in the same main class as a given Latin square. © 2003 Wiley Periodicals, Inc.  相似文献   

10.
In this note we obtain a large lower bound for the index of a certain critical set in the back-circulant Latin squares of odd order. This resolves in the negative a conjecture of Fitina, Seberry and Chaudhry [Back-circulant Latin square and the influence of a set, Austral. J. Combin. 20 (1999) 163-180].  相似文献   

11.
A certain recursive construction for biembeddings of Latin squares has played a substantial role in generating large numbers of nonisomorphic triangular embeddings of complete graphs. In this article, we prove that, except for the groups and C 4 , each Latin square formed from the Cayley table of an Abelian group appears in a biembedding in which the second Latin square has a transversal. Such biembeddings may then be freely used as ingredients in the recursive construction. Copyright © 2011 Wiley Periodicals, Inc. J Combin Designs 20:81‐88, 2012  相似文献   

12.
讨论不完全自正交拉丁方ISOLS(v;3,3)的存在性问题.证明当v≥12,v{13,14,15,16,17,18,19,20,21,22,23,24,25,27,28,29,30,31,33,35,36}时,存在ISOLS(v;3,3).  相似文献   

13.
An intercalate in a Latin square is a 2 × 2 Latin subsquare. Let be the number of intercalates in a uniformly random n × n Latin square. We prove that asymptotically almost surely , and that (therefore asymptotically almost surely for any ). This significantly improves the previous best lower and upper bounds. We also give an upper tail bound for the number of intercalates in 2 fixed rows of a random Latin square. In addition, we discuss a problem of Linial and Luria on low‐discrepancy Latin squares.  相似文献   

14.
A generalized Latin square of type (n,k) is an n×n array of symbols 1,2,…,k such that each of these symbols occurs at most once in each row and each column. Let d(n,k) denote the cardinality of the minimal set S of given entries of an n×n array such that there exists a unique extension of S to a generalized Latin square of type (n,k). In this paper we discuss the properties of d(n,k) for k=2n-1 and k=2n-2. We give an alternate proof of the identity d(n,2n-1)=n2-n, which holds for even n, and we establish the new result . We also show that the latter bound is tight for n divisible by 10.  相似文献   

15.
Denote by SFin(v) the set of all integer pairs (t, s) for which there exist three symmetric Latin squares of order v on the same set having fine structure (t, s). We completely determine the set SFin(2n) for any integer n ≥ 5.  相似文献   

16.
The non-existence of a pair of mutually orthogonal Latin squares of order six is a well-known result in the theory of combinatorial designs. It was conjectured by Euler in 1782 and was first proved by Tarry in 1900 by means of an exhaustive enumeration of equivalence classes of Latin squares of order six. Various further proofs have since been given, but these proofs generally require extensive prior subject knowledge in order to follow them, or are ‘blind’ proofs in the sense that most of the work is done by computer or by exhaustive enumeration. In this paper we present a graph-theoretic proof of a somewhat weaker result, namely the non-existence of self-orthogonal Latin squares of order six, by introducing the concept of a self-orthogonal Latin square graph. The advantage of this proof is that it is easily verifiable and accessible to discrete mathematicians not intimately familiar with the theory of combinatorial designs. The proof also does not require any significant prior knowledge of graph theory.  相似文献   

17.
利用线性取余变换构造素数阶完备正交拉丁方组,给出泛对角线幻方的一种构造法.  相似文献   

18.
An idempotent Latin square of order v is called resolvable and denoted by RILS(v) if the off‐diagonal cells can be resolved into disjoint transversals. A large set of resolvable idempotent Latin squares of order v, briefly LRILS(v), is a collection of RILS(v)s pairwise agreeing on only the main diagonal. In this paper, it is established that there exists an LRILS(v) for any positive integer , except for , and except possibly for .  相似文献   

19.
Let L be a latin square of indeterminates. We explore the determinant and permanent of L and show that a number of properties of L can be recovered from the polynomials and per(L). For example, it is possible to tell how many transversals L has from per(L), and the number of 2 × 2 latin subsquares in L can be determined from both and per(L). More generally, we can diagnose from or per(L) the lengths of all symbol cycles. These cycle lengths provide a formula for the coefficient of each monomial in and per(L) that involves only two different indeterminates. Latin squares A and B are trisotopic if B can be obtained from A by permuting rows, permuting columns, permuting symbols, and/or transposing. We show that nontrisotopic latin squares with equal permanents and equal determinants exist for all orders that are divisible by 3. We also show that the permanent, together with knowledge of the identity element, distinguishes Cayley tables of finite groups from each other. A similar result for determinants was already known.  相似文献   

20.
A weakly pandiagonal Latin square of order n over the number set {0, 1, . . . , n-1} is a Latin square having the property that the sum of the n numbers in each of 2n diagonals is the same. In this paper, we shall prove that a pair of orthogonal weakly pandiagonal Latin squares of order n exists if and only if n ≡ 0, 1, 3 (mod 4) and n≠3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号